
ART-99-578-001-TR

DEMONSTRATION AND EVALUATION OF THE STREAK TUBE IMAGING
LIDAR FOR USE IN BYCATCH REDUCTION

Final Report

ANDREW J. GRIFFIS

31 August 1999

Distribution:

1 original and 2 copies – U.S. Department of Commerce, NOAA
1 copy – Southwest Fisheries Science Center

This document consists of 104 pages.

“A report of Areté Associates Incorporated pursuant to National Oceanic and Atmospheric
Administration Grant No. NA77FD0045.  The views expressed herein are those of the
author and do not necessarily reflect the views of NOAA or any of its subagencies.”



2



3

TABLE OF CONTENTS
1. Report title ................................................................................................................. 11
2. Abstract...................................................................................................................... 11
3. Executive summary.................................................................................................... 11
4. Purpose ...................................................................................................................... 12
5. Approach.................................................................................................................... 15
5.1 Sensor development and test ..................................................................................... 15
5.1.1 System design and modifications .............................................................................. 15
5.1.2 STIL sensor operation ............................................................................................... 15
5.1.3 CSIRO experimental effort ....................................................................................... 17
5.1.4 Data analysis for CSIRO SBT data ........................................................................... 21
5.1.5 System enhancements................................................................................................ 22
5.2 Model calculations for fish detection and sensor radiometric performance ............. 23
5.3 Experiments............................................................................................................... 24
5.3.1 Hawaiian Islands experiment .................................................................................... 24
5.3.2 Data analysis for Hawaiian experiment..................................................................... 24
5.3.3 New England Aquarium experiment......................................................................... 25
5.3.4 Data analysis for GBFT data ..................................................................................... 26
5.4 Development of a performance model based on experimental outcomes................. 27
5.5 Generation of LIDAR fish image database ............................................................... 27
5.6 Project management .................................................................................................. 27
6. Findings ..................................................................................................................... 29
6.1 Understanding ASTIL image data............................................................................. 29
6.2 ASTIL observations of tuna ...................................................................................... 31
6.2.1 Giant bluefin tuna (thunnus thynnus) data ................................................................ 32
6.2.2 Southern bluefin tuna (thunnus maccoyii) (SBT) data.............................................. 33
6.2.3 Eastern tropical pacific (ETP) yellowfin data ........................................................... 33
6.3 Tuna contrast and resolution considerations ............................................................. 33
6.4 Calculation of expected LIDAR returns for tuna ...................................................... 38
6.5 Experimental observations ........................................................................................ 39
6.5.1 Observed images: 2D, 2D w/ 1D slices..................................................................... 40
6.5.2 Observed images: 3D, 3D w/ 2D projections............................................................ 41
6.5.3 LIDAR signature observations (shape, reflectivity).................................................. 41
6.5.4 GBFT schooling statistics (distribution, density)...................................................... 43
6.6 Measured detection performance .............................................................................. 43
6.6.1 Introduction to detection (target vs background, filtering) ....................................... 43
6.6.2 Formation of “ground truth”...................................................................................... 44
6.6.3 Formation/calculation of detection statistics............................................................. 45
6.6.4 Equations used to implement 3D matched filtering: ................................................. 45
6.6.5 Comments on the implementation............................................................................. 46
6.6.6 Generation of target and background probability density functions ......................... 46
6.6.7 Generation of a receiver operating curve .................................................................. 47
6.6.8 Application of the ROC to the GBFT data................................................................ 48
6.6.9 Comments on the processing..................................................................................... 48
6.7 Performance summary of the prototype ASTIL for GBFT....................................... 48
6.8 Discussion of performance requirements for yellowfin tuna detection .................... 49



4

6.8.1 Cross-track resolution requirements based on experimental results ......................... 49
6.8.2 SNR needed for detection of fish and fish schools ................................................... 50
6.8.3 Required laser energy................................................................................................ 51
6.8.4 Laser PRF (along-track resolution) requirements ..................................................... 51
6.9 Performance projections............................................................................................ 52
6.9.1 Comparison of existing model with observations ..................................................... 52
6.9.2 Extension of the existing model to deployable sensor configuration........................ 52
6.9.3 Single-tuna detection statistics .................................................................................. 53
6.9.4 Aggregate tuna school detection statistics ................................................................ 55
6.9.4.1 Aggregate tuna school direct detection performance ................................................ 55
6.9.4.2 School detection based on apparent water optical properties.................................... 56
6.9.5 Summary of detection performance .......................................................................... 57
6.10 Utility of ASTIL for school imaging......................................................................... 59
6.10.1 Government oversight and stock assessment ............................................................ 59
6.10.2 Commercial fishing operations ................................................................................. 59
6.11 Discussion of problems encountered......................................................................... 60
6.11.1 Aircraft logistics and alignment ................................................................................ 60
6.11.2 Proximity to fish schools and size of available schools ............................................ 60
6.11.3 Optimality of available sensor technology................................................................ 60
6.12 Description of need, if any, for additional work ....................................................... 61
7. Evaluation .................................................................................................................. 61
7.1 Dissemination of project results ................................................................................ 62



5

LIST OF FIGURES

Figure 1.    Conceptual view of STIL as a 3D sensor for subsurface viewing.............................. 63

Figure 2.    Streak tube architecture from a photonics point of view. ........................................... 63

Figure 3.    Typical streak tube lidar data collection illustration.  Coverage of the dimension
perpendicular to the plane of data collection is achieved by either motion of the
sensor or a 1-D scanning system.  A method to collect volume data with one laser
pulse, rather than the single slice shown here, is described in Section 2.2.3............. 64

Figure 4.    Block diagram of STIL laboratory system prior to ASTIL development efforts. ...... 64

Figure 5.    ASTIL system configuration.  Dashed blocks indicate components added or upgraded
after the initial CSIRO experiments........................................................................... 65

Figure 6.    Terrestrial mapping data. (a) Aerial photo of the buildings being surveyed. (b) Single
laser shot showing raw data for one line image, indicated by single white line in (a).
(c) Range image of area outlined in square in (a) generated by reconstructing from
the individual line images. ......................................................................................... 66

Figure 7.    ASTIL installation in the Partenavia Explorer for the first airborne tests .................. 67

Figure 8.    Jeff Plath, Andy Griffis and Pat O’Brien with the Partenavia Explorer in February of
1997 for Tucson flight tests. ...................................................................................... 67

Figure 9.    Energy density as a function of altitude for 3 ASTIL sensor configurations.  Solid is
for 130mJ and 15 degree swath (prototype ASTIL at 30Hz); dotted is 130mJ and 25
degree swath (upgraded ASTIL); dashed is 12mJ and 15 degree swath (prototype
ASTIL at 100Hz) ....................................................................................................... 68

Figure 10.  One of the SBT fish nets in Boston Bay, South Australia. ......................................... 68

Figure 11.  Andrew, Tasmanian Air Pilot, Dr. Ann Cowling, and Derek Hayman, who provided
aircraft and logistics support for the CSIRO experiments. ........................................ 69

Figure 12.  ASTIL installation aboard the Aerocommander 500 provided by CSIRO and
Tasmanian Air.  Both racks were installed across the width of the aircraft body – the
only installation to date to allow for this.................................................................... 69

Figure 13.  Example of a single SBT signature at 3m depth......................................................... 70

Figure 14.  Top view of a 16kg SBT............................................................................................. 70

Figure 15.  Side view of a 16kg SBT ............................................................................................ 70



6

Figure 16.  Example of radiometric calculation for ASTIL performance assuming a Lambertian
reflector with 2% effective reflectivity.  Aircraft is at 1000’ and water is 0.15/m
diffuse attenuation...................................................................................................... 71

Figure 17.  Regions flown in Hawaiian field tests. ....................................................................... 72

Figure 18.  Example of ASTIL raw data showing the 2D nature of the data from each pulse of the
laser.  (a) Raw data from Boston Bay showing the return from both the surface and
the bottom, (b) corresponding annotated image......................................................... 72

Figure 19.  Average range-transect for raw data in Figure 18. ..................................................... 73

Figure 20.  2D Image sequence for an akule school (Hawaii, 1997) ............................................ 74

Figure 21.  3D Rendering of akule school from raw 2D data; surface is removed prior to
rendering. ................................................................................................................... 75

Figure 22.  Location of experimental data collection for the GBFT experiments. The GBFT data
presented in this report were gathered at the locations in the upper right hand region
of the chart, off the northern tip of Cape Cod. ........................................................... 75

Figure 23.  Raw image of GBFT.  The surface return dominates the image, however, small spots
near the lower right hand side can be seen................................................................. 76

Figure 24.  Raw image of GBFT.  Several faint signatures are visible on the right hand side of
the image. ................................................................................................................... 76

Figure 25.  ASTIL image of yellowfin tuna near Pearl Harbor, HI (September 1997).  The tuna is
the bright spot just beneath the surface in the left half of the image. ........................ 76

Figure 26.  Cross-track (horizontal) slice through raw image of yellowfin tuna (upper) and its
corresponding derived contrast.  The tuna signature is at the 70th cross-track pixel
and shows a contrast just above 2.   The possible under-resolved nature of the
signature may have introduced a lower than usual contrast....................................... 77

Figure 27.  Contrast vs. effective reflectivity for several packing densities. ................................ 78

Figure 28.  Shadow image of 6-inch fish collected from an underwater-class advanced
technology STIL sensor. ............................................................................................ 78

Figure 29.  Contrast vs. pixel area (resolution element) for a 20kg tuna. ..................................... 79

Figure 30.  Required lateral resolution (m2) to achieve contrast = 4.4  vs. tuna effective
reflectivity, based on 20kg tuna.  The packing density is 0.25/m3 ............................ 79



7

Figure 31.  Pre-experimental signal-to-noise ratio calculations for GBFT; solid line is for non-
scattering water media, dashed line is the theoretical maximum SNR for the camera
system based on the available digitization, dotted line is the performance for
scattering media. ........................................................................................................ 80

Figure 32.  2D ASTIL image of dolphin; water depth is 12m; dolphin is at 8m depth. ............... 80

Figure 33.  Image of dolphin in after range and exponential decay are corrected for. ................. 81

Figure 34.  Processed GBFT image corresponding to the raw data shown in Figure 23.  A single
GBFT dominates the data, seen near the middle right hand side of the image.......... 81

Figure 35.  Processed image of GBFT corresponding to the raw data in Figure 24.  Six GBFT
signatures are readily visible and one or two marginal instances are also present. ... 81

Figure 36.  1D profiles through the image of Figure 34.  The upper profile shows the context of
both surface and GBFT return on logarithmic scale; the lower profile focuses on the
GBFT return and is plotted on a linear scale. ............................................................ 82

Figure 37.  3D image of a GBFT school near Cape Cod.  The school spans an area roughly 20 x
40m laterally and extends from near the surface down to 5m in depth, as shown in
the rendering. ............................................................................................................. 83

Figure 38.  2D topographical projection of the 3D data in Figure 37. .......................................... 84

Figure 39.  Average range profile of the GBFT data.  The average is for range vectors aligned by
matched filter peak location. ...................................................................................... 85

Figure 40.  Average range profiles of GBFT.  Average is formed by peak-alignment of the
individual range vectors for rectangular data points and by peak-alignment via
matched filtered peak. ................................................................................................ 85

Figure 41.  Average cross-track profiles of GBFT........................................................................ 86

Figure 42.  Average along-track profiles of GBFT....................................................................... 86

Figure 43.  1D profile for peaks with noisy raw-aligned computed data (solid line) and the
original noiseless data (dotted line).  A representative noisy image and the noiseless
image are shown in the lower left hand corner.  The noisy object has an SNR of 9. 87

Figure 44.  1D profile for peaks with noisy raw-aligned computed data (solid line) and the
original noiseless data (dotted line).  A representative noisy image and the noiseless
image are shown in the lower left hand corner.  The noisy object has an SNR of 36.
.................................................................................................................................... 87

Figure 45.  Scatter plot of contrast versus GBFT depth.  Median is 4.4; standard deviation is 1.8.
.................................................................................................................................... 88



8

Figure 46.  GBFT school depth distribution.  Median depth is 3.4m; standard deviation is 0.94m.
.................................................................................................................................... 88

Figure 47.  GBFT along-track size distribution.  Median is 0.57m; standard deviation is 0.34m.88

Figure 48.  GBFT cross-track size distribution.  Median is 0.55m; standard deviation is 0.14m. 89

Figure 49.  GBFT cross-track position as a function of depth (m) below the surface. ................. 89

Figure 50.  GBFT along-track position as a function of depth (m) below surface. ...................... 89

Figure 51.  Histogram (top) and Cumulative distribution (bottom) graphs of the probability of
detection (POD) and probability of false alarm (PFA) for GBFT with ASTIL......... 90

Figure 52.  ASTIL receiver operating curve for GBFT; linear coordinates.................................. 91

Figure 53.  ASTIL receiver operating curve for GBFT; logarithmic coordinates. ....................... 91

Figure 54.  GBFT detection performance showing automatically detected tuna and the analyst-
detected tuna for a region extending beyond the central school region by 50% in each
direction. .................................................................................................................... 93

Figure 55.  GBFT detection performance showing only automatically detected tuna for a region
extending beyond the central school region by 50% in each direction...................... 93

Figure 56.  In-water spreading as a function of depth for 3 water types.  Solid line is JWT-II;
dotted is JWT-IB; dashed is JWT-IA......................................................................... 95

Figure 57.  GBFT detected per shot for the central 40 shots over the GBFT school.................... 95

Figure 58.  GBFT detected per shot for 3 different laser PRFs:  100 Hz (same as ASTIL
configuration), 50 Hz, 25 Hz.  Data are derived from the 100 Hz GBFT data already
shown. ........................................................................................................................ 96

Figure 59.  Filtered GBFT detected per shot for 3 different laser PRFs:  100 Hz (same as ASTIL
configuration), 50 Hz, 25 Hz.  Data are derived from the 100 Hz GBFT data already
shown.  An 11-point boxcar average has been applied to the data to produce the
filtered output. ............................................................................................................ 96

Figure 60.  Comparison of measured SNR to theoretical SNR for both scattering and non-
scattering media using a measured target contrast.  Dotted line is SNR with
scattering; solid line is SNR without scattering.  GBFT SNR is shown as a single
point with error bars, representing the measured GBFT statistics. ............................ 97



9

Figure 61.  Comparison of measured GBFT SNR to theoretical SNR for both scattering and non-
scattering media using a derived target reflectivity.  Dotted line is SNR with
scattering; solid line is SNR without scattering.  GBFT SNR is shown as a single
point with error bars, representing the measured GBFT statistics.  The dashed line
indicates the digitizer-limited maximum system SNR, to help distinguish the
theoretical from the practical. .................................................................................... 97

Figure 62.  SNR performance estimate for 100cm yellowfin in the ETP; swath is 15 degrees,
energy is 130 mJ/shot, resolution is 1024 pixels cross-track, water is JWT-IB, with
mean square angle of 0.06 (estimated ETP value); altitude is 500m; contrast is 6.4.98

Figure 63.  SNR performance estimate for 100cm yellowfin in the ETP; swath is 15 degrees,
energy is 130 mJ/shot, resolution is 1024 pixels cross-track, water is JWT-IB, with
mean square scattering angle of 0.06 (estimated ETP value); altitude is 200m;
contrast is 6.4. ............................................................................................................ 98

Figure 64.  SNR performance estimate for 100cm yellowfin in the ETP; swath is 15 degrees,
energy is 130 mJ/shot, resolution is 1024 pixels cross-track, water is JWT-IB, with
mean square scattering angle of 0.06 (estimated ETP value); altitude is 100m;
contrast is 6.4. ............................................................................................................ 99

Figure 65.  SNR performance estimate for 100cm yellowfin in the ETP; swath is 25 degrees,
energy is 130 mJ/shot, resolution is 1024 pixels cross-track, water is JWT-IB, with
mean square scattering angle of 0.06 (estimated ETP value); altitude is 200m;
contrast is 6.4.  Sensor has upgraded streak tube electronics, CCD camera and
principal lens assembly. ............................................................................................. 99

Figure 66.  SNR performance estimate for 100cm yellowfin in the ETP; swath is 25 degrees,
energy is 130 mJ/shot, resolution is 1024 pixels cross-track, water is JWT-IB, with
mean square scattering angle of 0.06 (estimated ETP value); altitude is 500m;
contrast is 6.4.  Sensor has upgraded streak tube electronics, CCD camera and
principal lens assembly. ........................................................................................... 100

Figure 67.  SNR performance estimate for 100cm yellowfin in the ETP; swath is 25 degrees,
energy is 130 mJ/shot, resolution is 1024 pixels cross-track, water is JWT-IB, with
mean square scattering angle of 0.06 (estimated ETP value); altitude is 1000m;
contrast is 6.4.  Sensor has upgraded streak tube electronics, CCD camera and
principal lens assembly. ........................................................................................... 100

Figure 68.  Multi-fish SNR performance estimated for single shot detection statistics at 1 body
length packing within a 20000kg school at 200m altitude....................................... 101

Figure 69.  Multi-fish SNR performance estimated for single shot detection statistics at 1 body
length packing within a 20000kg school at 500m altitude....................................... 101

Figure 70.  Multi-fish SNR performance estimated for single shot detection statistics at 3
different body lengths (solid = 1BL, dotted = 3BL, dashed = 10BL).  Altitude is
200m......................................................................................................................... 102



10

Figure 71.  Multi-fish SNR performance estimated for single shot detection statistics at 3
different body lengths (solid = 1BL, dotted = 3BL, dashed = 10BL).  Altitude is
500m......................................................................................................................... 102

Figure 72.  ASTIL-derived attenuation coefficient for SBT in Boston Bay (South Australia) and
adjacent waters.   Two captive schools were imaged, with approximately 50m of
open water between them.  Dotted line = raw K estimates per shot; solid line =
smoothed version of raw K estimates. ..................................................................... 103

Figure 73.  SNR associated with volume backscatter data for use in calculating apparent water
attenuation.  Shown are upgraded ASTIL performance data for 500m altitude, JWTII
water, and range bins of 0.3m per range pixel.  The individual curves are labeled for
the number of cross-track pixels averaged to estimate the attenuation (1024 is the
total cross-track pixels available)............................................................................. 103

LIST OF TABLES

Table 1.  Resolution and data rate requirements for CSIRO experiments as compared
to the laboratory STIL configuration.  The CSIRO Requirement is shown for
major and minor axes of SBT…………………………………………………………18

Table 2.  ASTIL configuration for the CSIRO experiments……………………………………20

Table 3.  ASTIL system enhancements prior to and subsequent to SK Grant effort…………...22

Table 4.  Support for New England GBFT experiment………………………………………...26

Table 5.  Tuna species imaged with ASTIL sensor……………………………………………. 32

Table 6.  LIDAR parameters used in experimental SNR calculations………………………….39

Table 7.  Packing density vs. body length for 20kg, 100cm yellowfin tuna……………………55

Table 8.  Attenuation coefficient statistics from data in Figure 72……………………………..57

Table 9.  Estimated maximum detection depth for ASTIL detection of 20kg, 100cm yellowfin
tuna in the ETP.  Variable altitudes are used depending on configuration, so as to
maximize utility……………………………………………………………………….58



11

1.  Report title

Demonstration and Evaluation of the Streak Tube Imaging Lidar for Use in Bycatch Reduction

2. Abstract

The Airborne Streak Tube Imaging LIDAR (ASTIL) was evaluated for use in detecting schools
of tuna in the Eastern Tropical Pacific (ETP) waters in order to aid in reducing bycatch of
dolphin associated with yellowfin tuna.  Three airborne experiments were conducted and data
were collected for southern bluefin tuna, yellowfin tuna, akule (trachiurops crumenophthalmus),
giant bluefin tuna (GBFT) and dolphin1.  The LIDAR signature of tuna was studied and extended
to an evaluation of fish and fish school detection of GBFT using STIL experimental data.  The
utility of fish school detection was confirmed for GBFT in terms of detection statistics for binary
hypothesis testing and also by direct implementation of a three-dimensional matched filter
algorithm.  Based on the GBFT observations, modeled performance estimates were made for
yellowfin in the ETP for an upgraded ASTIL system.

3. Executive summary

This report details the evaluation of the ASTIL for use in detecting schools of tuna in the ETP
waters in order to aid in reducing bycatch of dolphin associated with yellowfin tuna.  The
discussion begins with a restatement of the problem at hand, followed by summary descriptions
of the organizational means of accomplishing the work, and a statement of the work intended and
the work achieved.  The body of the report delineates the pre-experimental, experimental and
post-experimental data collection and analyses, and features many graphical portrayals of data
and concepts.

This research succeeded in establishing, for the first time known to the authors, a quantitative
demonstration of the detection of tuna and tuna schools with airborne LIDAR.  A school of more
than 70 tuna was imaged and used to build a three dimensional detection algorithm that was
demonstrated as part of the work presented here.  The tuna species used for this work was the
GBFT which was imaged in the waters of New England.  GBFT with an apparent packing
density of 0.04/m3 were detected at 2-6 meters water depth with a median signal to noise ratio of
7.7.  The yellowfin tuna was not able to be evaluated this way, owing to the scarcity of data
collected.  Data collected for southern bluefin tuna (SBT) were used to initiate and further the
understanding of the GBFT data that were collected.

The GBFT data were further used to produce a receiver operating curve (ROC).  The ROC data
indicated that the prototype ASTIL sensor could yield useful GBFT performance with a
probability of detection in excess of 80 percent for single tuna detection scenarios.  The GBFT
data and sensor model were used to estimate yellowfin tuna (thunnus albacares) performance for

                                                
1 Two of the airborne experiments were funded directly by this research.  One (southern bluefin tuna) experiment
was only provided with data analysis support by this research.



12

an upgraded ASTIL sensor and showed potential for performance at 18-45 meters water depth,
depending on the sensor configuration and the precise nature of the collected data.

The work conducted spanned nearly two years, beginning with the data analysis in support of
airborne experiments in Boston Bay, South Australia in April of 1997, extending to the Hawaiian
Islands in September of 1997, and concluding in the Cape Cod, Massachusetts region in the
Summer of 1998.  Two separate aircraft installations were concluded in association with this
research, as two intensive field experiments were fully supported2.  Data are shown for 3D, 2D
and 1D portrayals of the STIL data collected.

4. Purpose

The problem that is addressed by this research is that of dolphin bycatch in the ETP yellowfin
tuna fishery.  While there may be mechanical and technique innovations that can provide some
relief to this problem by allowing caught dolphins to exit, this research approaches the problem
early in the fishing operation by trying to direct fishing operations to tuna schools that are not
associated with dolphin.

Specifically, this effort sought to demonstrate the basic feasibility of using an airborne LIDAR
system to locate schools of yellowfin tuna that are not associated with dolphin.  The LIDAR
technology that was evaluated was a prototype Streak Tube Imaging LIDAR (STIL) developed
by Areté Associates with support from the Office of Naval Research (ONR) for generating high-
resolution imagery of the ocean floor from an underwater vehicle.

Broadly, the objective of this research has been to conduct experiments that would yield data
from which an assessment could be made of the basic feasibility of locating (detecting) schools
of yellowfin tuna in the ETP using ASTIL system.  However, when this research was proposed,
the laboratory sensor equipment that had been demonstrated was not suitable for conducting an
airborne experiment.  Consequently, one of the proposed objectives of this research was to
modify the laboratory sensor for airborne experiments, with support from preliminary predictive
models that might indicate how best to modify the sensor.  Finally, given that suitable data could
be obtained, the research was to culminate in a data-based assessment of performance,
accompanied by some estimates of the overall performance of the sensor in detecting fish.  This
performance assessment, then, would be the basis for summary statements on the feasibility of
using the ASTIL technology for dolphin bycatch reduction in the ETP yellowfin tuna fishery.

Delineated more in accord with a breakdown of work, the objectives were as follows:

! Identify, through modeling and simulation, the key sensor parameters and settings to
modify in order to adapt the laboratory STIL sensor into an ASTIL sensor that would
provide the data required for this assessment

! Modify the sensor and confirm its operation in simple terrestrial and (if possible) over-
water targets

                                                
2 The aircraft operations for the first experiment, in South Australia, were not supported by this research, though the
two efforts did overlap.
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! Conduct airborne experiments in southern California and Hawaii, per opportunity, to
obtain yellowfin tuna imagery

! Analyze the airborne LIDAR data to quantify performance for yellowfin tuna detection
! Use the measured sensor performance to make the assessment of the ASTIL sensor utility

to the bycatch problem

The research emphasis was on the collection and analysis of LIDAR data relevant to the dolphin
bycatch problem.  As will be made clear in the sections of this report that follow, this aspect of
the research was carried through to completion with very gratifying results.  However, owing to
the timing of the grant award and the timing and nature of the opportunities that arose during the
period of this grant, it was neither possible nor prudent to carry out the research precisely as
proposed.  The next several paragraphs elaborate some of the underlying differences between the
proposed research and the research that was actually conducted.  It is hoped that will help avoid
some confusion for the reader when the research carried out is discussed in sections that follow.

The proposal for this effort was written in the spring of 1996, approximately half of the way into
the ONR-sponsored research for the STIL sensor.  The proposed research was to have been
under contract, if awarded, by the end of 1996.  This would have allowed for some calculations
to be made and subsequent sensor modifications to be introduced in time to participate in
National Marine Fisheries Service (NMFS) experiments during the spring of 1997.  Furthermore,
if adequate coordination could be made, an experiment was to have been conducted coincident
with a billfish tournament in Hawaii later in the summer of 1997.

Thus, in a period of one year, the sensor modifications could have been made and the data
collected, while still leaving enough time for some analysis and an assessment of performance.
Fortunately, circumstances prevented the execution of the research as proposed.  It was not
possible then to predict that this was a fortunate turn of events, but it clearly worked out to be so
in the end.  As will be elaborated briefly, there were two aspects of the actual timing of the
research that were of significant benefit to the overall objectives:  1) the delay in the grant award,
combined with opportunities with other fisheries interests, allowed for an infusion of Areté
IR&D that advanced the sensor well beyond the anticipated minimum needed (and therefore
proposed) for the present research, and 2) the ensuing extension of the award to allow for
additional experiment opportunities and also to accommodate non-interference with the ONR
effort (from which this research needed to borrow significant technologies) allowed this research
to benefit greatly from the data analysis tools and techniques that were developed under the ONR
STIL program.

Late in the summer of 1996, interaction with researchers at the Commonwealth Scientific and
Industrial Research Organization (CSIRO) gave rise to a request for STIL sensor modifications
that would allow for imaging SBT in the waters of South Australia.  As CSIRO was interested in
distinguishing juvenile SBT from adult SBT for the purposes of stock maturity estimation,
significant changes in data collection speed and laser pulse repetition rate were required to even
consider doing the experiment, planned for March/April of 1997 (approximately the same time
as the NMFS experiment with which Areté would collaborate if an award was made).  As
CSIRO could not fund sensor modifications, and since Areté had an ongoing interest in doing
airborne research, but as yet had no indication of funding for such research, Areté chose to fund
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the modifications to the laboratory STIL sensor in order to gather the SBT data needed for the
CSIRO experiment.  The IR&D funds were approved in December of 1996, as it appeared that
the proposed bycatch research was either going to be delayed or not funded.  The sensor design
changes were made and implemented by late February of 1997 (though several were forced to
delay, owing to the short time for testing) and experiments were conducted in South Australia
between March 26 and April 10 of 1997.

The SBT experiments had the advantage of observing captive schools of SBT, which proved
very advantageous for an airborne sensor that was very immature and still needing engineering
support for ongoing operations.  After optimizing the sensor in the field, good data for SBT were
obtained that showed the importance of resolution and sensitivity in conducting experiments3.
In addition to these observations, it was clear that the planned sensor improvements that could
not be finished in time for the CSIRO trials still needed to be implemented prior to conducting
further experiments.

The present grant award was approved for contractual expenses starting April 1, 1997.  However,
as most of the critical sensor changes had been made already, the early approach to the research
needed to change from simulation and analysis to support engineering modifications, to that of
analyzing relevant experimental data and tuning and upgrading an existing sensor for further
experiments.  Such analysis did proceed, and engineering upgrades were made, but conflicts with
ongoing ONR research precluded participation in or planning for the billfish tournament in the
summer of 1997.  Instead, an experiment was planned and carried out in late September of 1997
in the Hawaiian Islands.  These experiments did not yield any significant amount of data on
yellowfin tuna (more will be mentioned on this later), but useful data were collected on other
species, and some operational lessons were learned and expertise in analyzing data continued to
grow4.

Because no significant tuna opportunities were obtained in Hawaii, as confirmed by analysis of
data in the fall of 1997, this effort was extended an additional 9 months, and an experiment was
planned in New England for GBFT, as the associated fishery had a good history of opportunities
for aerial observation.  Furthermore, the GBFT allow for unambiguous association of a LIDAR
signature with a known species.  Also, owing to the size of the GBFT, it was hoped that the
LIDAR signature of the tuna would be large enough to be fully resolved without flying so low as
to alarm (“spook”) the fish, and the shallow depth of the fish provided visual confirmation to the
spotters, while facilitating good LIDAR imagery.  All of these factors proved to be instrumental
in obtaining a good set of tuna data, though aircraft logistics and the narrow field of view of the
existing sensor prevented the collection of an exhaustive database of GBFT imagery.

The analysis of the data from these experiments was conducted in part on site, though the careful
review of the data for detection performance was delayed, again owing to conflicts with the ONR
development efforts and experiments, until late in 1998 and up to the present time.  However, as
before, this delay has proved very beneficial, as the significant improvements in data processing

                                                
3 The findings section will show that this was true of both the school problem and the individual tuna detection
problem – the requirements are the same for both where early, non-operational research is concerned.
4 Of the 3 months that had high probability of spotting schools (July-September), the last was chosen (July-August
were not possible due to interference with the STIL sponsoring program with ONR, which owned the equipment).
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that have been made under ONR sponsorship have yielded much additional data and insights into
performance that would not have been possible on a shorter time scale.  The following sections
of this report will detail all of the efforts expended in this research, and will provide the reader
with a better grasp of not only the sensor operation, but also its utility for conducting airborne
research in the fisheries.  It is hoped that the above paragraphs have provided some historical
context to clarify the distinctions between the proposed research and the research actually carried
out.

5. Approach

5.1 Sensor development and test

The purpose of the sections that follow is to provide an account of the activities and
accomplishments of this research.  The discussions need to provide enough detail to give an
accurate sense of the work performed, and yet be concise enough to be understood in the larger
context.   Thus, some details associated with the experiments may be discussed only superficially
here, whereas some details on the sensor technology will be reiterated here in order to enable the
reader to more readily grasp the technical issues surrounding the STIL prototype.

5.1.1 System design and modifications

This section of the final report will elaborate the hardware and software changes introduced into
the STIL laboratory sensor5 in order to ready it for use in field experiments.  In order to help the
reader understand the changes introduced, it will help to review the principles of operation for
the STIL sensor.  Then the changes introduced to the laboratory system can be presented more
clearly.

5.1.2 STIL sensor operation

Figure 1 shows a conceptual view of the STIL and how it forms three dimensions by collecting
2D images of range and azimuth in a pushbroom fashion.  Generally, the STIL sensor generates
LIDAR data by projecting a fan-beam pulse of laser light and range resolving the backscattered
light with a streak tube receiver, yielding a two dimensional range-azimuth image from objects
in its field of view.  Figure 2 shows the basic streak tube architecture that is the core element of
the receiver optics.  It is very similar to a standard image intensifier tube in that it has a
photocathode that produces electrons which are accelerated to a phosphor screen (~300 phosphor
photons are created for each electron).  The major difference is that a streak tube has an extra
pair of plates that deflect the beam much like the deflection plates in a standard cathode ray tube
(CRT) tube used in oscilloscopes and TVs.  In normal operation the input photons are limited to
a single slit image plane.  The deflection plates have a fast ramp voltage applied that deflects the
beam from the top of the phosphor screen to the bottom very rapidly.  The image on the
phosphor screen has spatial information in the slit direction and time information in the streak
direction.  A CCD camera is attached to the streak tube to collect the image on the phosphor
screen.
                                                
5 Including changes introduced prior to the award of this grant, since some of those changes were proposed as part of
this research.
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In a typical streak-tube laser-radar configuration (Figure 3), a short-pulse-time high-pulse-energy
laser is used as a transmitter.  The transmitter beam is spread out into a single line, which is
directed towards the area of interest, and the receiver optics image the line back onto the slit
input to the streak tube.  Coverage of the target in the dimension perpendicular to the line
illumination is generally accomplished via motion of the vehicle carrying the sensor, which
allows one to build up a complete image from a series of individual line images (i.e., a
“pushbroom” system), although a 1-D scanner system could also be used from a fixed platform.

The sweep time of the streak tube represents the amount of time that it takes for the electron
beam from the photocathode to be fully swept across the phosphor screen, which corresponds to
the total range gate time (i.e., the total amount of time that the system digitizes range data).  The
starting point of the range gate is controlled by the trigger signal used to begin the sweep.
Computer control of both the sweep time and the sweep start trigger allows the operator to have
a very flexible laser radar system that can change its range gate size, range digitization starting
point, and range sampling resolution very rapidly.  This would allow for a system to search large
areas of range with coarse resolution and then “zoom in” to get high resolution around a region
of interest, for instance.

Each column of pixels in the CCD corresponds to one channel of digitized range data, such as
would be collected from a single time-resolved detector, such as a photomultiplier tube (PMT).
The size of the range bins is simply the sweep time divided by the number of pixels in the CCD
columns.

The airborne STIL system that Areté uses for bathymetry and terrestrial mapping contains a
diode-pumped solid-state Nd:YAG laser that is frequency doubled to 532 nm.  This wavelength
was chosen for maximum water penetration for the bathymetry task, as well as for being near the
peak of the streak tube photocathode responsivity curve.  Figure 4 shows the laboratory
configuration of the STIL system prior to modifications, and Figure 5 shows the corresponding
airborne system block diagram, with some of the system evolution to the present time indicated
accordingly.

Figure 6 shows a set of images taken from STIL during terrestrial mapping data collection6. A
photograph of the area imaged, a single shot from the data over the imaged buildings and also the
reconstructed 3D image are shown here as an intuitive example of ASTIL data.  As with the
ASTIL ocean data, the sampling of the target plane is different in the along-track and cross-track
directions (where “track” refers to the direction of motion of the aircraft, which is orthogonal the
line-illumination direction).  The along-track sampling7 is simply the velocity of the aircraft
divided by the pulse repetition frequency (PRF), in this case 65 m/s and 100 Hz, respectively,
which yields a ground sampling of 65cm.  The cross-track sampling is a function of the field of
view of the receiver (15 degrees), the altitude (350m), and the number of pixels across the slit
image (256), which yields a sampling of 32cm.

                                                
6 These are included here not for their relevance to this problem, but because the imagery are more intuitive than the
ocean data.
7 Here, sampling is used as a descriptor instead of resolution; this is because the PRF and forward velocity for fixed
wing operations often implies that the along track imagery are not continuously covered at the beam-driven
resolution; rather the along track dimension is sampled at the laser PRF and corresponding projected beam size.
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5.1.3 CSIRO experimental effort

During the fall of 1996 it was decided that Areté would begin considering conducting an
airborne experiment with CSIRO for the purpose of studying the population dynamics of
juvenile SBT.  The experiment, if deemed feasible, was to be conducted in South Australia
during March of 1997.  The population dynamics issue of interest to the STIL experiment was
the size distribution of SBT within a school.  This experiment was not fully a part of this
research, though the two efforts overlapped and have been mutually beneficial.  More
importantly, however, the experimental requirements for the CSIRO effort turned out to be
directly applicable to the requirements of this research and enable the collection of data that may
have otherwise been impossible to obtain.

Since the size of the fish is a LIDAR measurement that is tightly coupled to the resolution, this
became a system parameter of primary concern while requirements were redefined for potential
participation in the CSIRO experiment.  And while it was not known at the time the Saltonstall-
Kennedy (SK) grant work was proposed, the detection of any tuna in subsequent SK experiments
would also require resolution performance on a par with that which was determined to be
necessary for participation in the CSIRO experiments, as it later became evident that school
imaging for the purposes of detection and single tuna detection with an imaging system carry the
same resolution requirements.  So it was serendipitous that the modifications to the laboratory
system that were originally proposed were superseded by the requirements established in the
CSIRO experiments8.

The specific requirements for participation in CSIRO experiment were as follows:  a) the LIDAR
system must be able to detect SBT within a school with individual fish that varied in length from
60 to 120 cm and b) the deployed system must be operated from a light twin aircraft.  A depth
penetration of 10m was set as a goal, and it was hoped that the system would lend itself to
operation at greater depths, but the goals set for the first experiment were mainly to provide
proof of concept data that would encourage or remove from consideration further LIDAR
experiments.

Operation from a light twin aircraft implied that the laboratory system would have to be
compact, light and would have to be assembled in fairly rugged chassis – much more rugged
than the laboratory system, which relied on a “portable” optical bench for its ruggedness.  The
modifications implied by operation in small aircraft were related mainly to mechanical and
layout issues.  However, it was soon to be discovered that more substantial design changes
would be needed in order to achieve the performance implied by the altitude, depth and
resolution requirements.

In open ocean flights, higher altitudes are generally preferred to lower, owing mainly to flight
safety.  However, many airborne experiments are conducted at between 150 and 300 meters
altitude; thus, these made good starting points for lower and upper altitudes for making design
rule calculations.  A good number to use for light twin airspeed is 120 knots, which is about 60
m/s.  So the flight parameters used for design calculations were 150 and 300 meters altitude and
60 m/s.
                                                
8 Section 6.3 of this report will discuss these issues more at length.
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The smallest SBT size to be resolved (along the long axis) was 60 cm, or 0.6m.  In order to
sample (collect image data) at twice the highest resolution needed (i.e., Nyquist rates), the
samples would need to be 0.3m apart.  Thus, at 60 m/s ground speed, this implied that the laser
PRF would have to be 60 / 0.3 = 200 Hz in order to image an along-track oriented SBT.  For
sampling this axis of the SBT along the cross-track dimension, the 0.3m sampling merely implies
0.3m/300m = 0.001 radians angular resolution at 300 meters altitude; this angular resolution was
already met with the laboratory system, though the proposed SK system modifications would not
have met this requirement, thereby also precluding school imaging of yellowfin tuna in the same
size class (1 meter length was the median length to be imaged).

There were also implied requirements for imaging an SBT along its narrow axis.  Using a 5:1
aspect ratio9 as an educated guess at the fish shape, the resolution requirements would be more
stringent by a factor of five.  The implications of these requirements and the aforementioned
requirements are tabulated in Table 1 along with the associated parameters for the laboratory
STIL system.  A few observations follow directly from this table.

Table 1.  Resolution and data rate requirements for CSIRO experiments as compared
to the laboratory STIL configuration.  The CSIRO requirement is shown for

major and minor axes of SBT.

Parameter Laboratory STIL SK Proposed CSIRO Requirement
Along-Track Res. 6m 2m 0.3m (0.06m)
Cross-Track Res. 0.001 rad 0.002 rad 0.001 rad (0.0002 rad)
Image Capture Rate 10 Hz 30 Hz 200 Hz (1000 Hz)

First, the CSIRO requirements (which turned out to be very close to the requirements for this
research) could not be met with the proposed SK system configuration.  Second, the increase in
resolution for imaging the hypothetical 5:1 aspect ratio fish body required more than an order of
magnitude improvement in resolution over the laboratory system if the minor axis of the fish
were to be fully resolved.  However, for the major axis of the fish the resolution requirements
could be met for some situations, provided that the other system parameters were not forced to
take on values that would be prohibitive (i.e., if the implied laser PRF were unavailable).

Thus, as the values shown in Table 1 indicated that an ideal sensor solution could not be found
within the allowed time or cost, the issue for consideration became whether or not there was a
scenario, or set of scenarios, that would still allow a successful experiment to be constructed.  It
was determined that, if adequate numbers of SBT were schooled with expected10 11 packing
densities, it wouldn’t be necessary to fully resolve the fish along both axes in order to gain
information on the distribution of fish lengths within a school.  Rather, it would be adequate to
resolve the major axis and rely on the law of large numbers, or make multiple passes over the
school being imaged in order to get statistically significant samples at orthogonal directions with

                                                
9 This turned out to be a reasonable number for rough calculations, as an SBT was measured to have a tip-tail aspect
ratio of  6.5:1 (39 inches long, 6 inches wide, 16kg), which implies that the body aspect ratio is just slightly less.
10 Data Analysis of the Aerial Survey (1991-1996) for Juvenile Southern Bluefin Tuna in the Great Australian Bight,
A. Cowling, T. Polachek, C. Miller, Draft CSIRO Report, Division of Fisheries Research.
11 Conversations with Dr. Ann Cowling, Division of Fisheries Research, CSIRO.
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respect to the fish.  So while it was realized that this sort of operational scenario would not
necessarily be adequate for an operational sensor, it would yield data suitable for assessing basic
feasibility, provided that enough fish signature was present for gathering the data.

The LIDAR signature of an object is driven by its size relative to a resolution element of the
sensor and also by its contrast with respect to the background media the object is immersed in
(water, in the present case).  The contrast, furthermore, is a function of how light reflects from
the object.  A common assumption is that the object have a Lambertian reflectivity character,
meaning that it reflects light uniformly back toward the source of light (the laser).  For example,
flat paint is often a good Lambertian reflector.  The opposite of a Lambertian reflector is a mirror
– the light reflects in only one direction, depending on the angle of the mirror with respect to the
light source.

The assumptions made for the proposed SK work, and also the CSIRO work, assumed that the
fish would have an essentially Lambertian reflectivity profile.  It was also assumed that the
dorsal reflectivity, or the total amount of light reflected from the dorsal aspect of the fish, would
be less than 10 percent, and perhaps even low single digits12.  It will be shown later in this report
that the reflectivity was consistent with this expectation.  Thus, based on the single-digit
reflectivity expectation, a Lambertian model was assumed for the SBT that yielded an effective
reflectivity of 2%, which was regarded as conservative.

Given the aforementioned fish model assumptions, the remaining design issues to settle were the
laser and the CCD camera that would capture the STIL images generated on the phosphor of the
streak tube.  It was clear from a review of the data in Table 1 that significant changes would need
to be made to the laser and camera system (especially the CCD camera and associated data
acquisition system) in order to accommodate the CSIRO experimental objectives.  The situation
was exacerbated by the fact that, as the laser PRF increases, the energy per pulse tends to
decrease (holding the average power roughly the same), meaning that fewer photons would be
available to image with, which tends to degrade overall performance.  Furthermore, as the CCD
frame rate increases, the noise also increases while sensitivity decreases, holding the choice of
CCD technology constant.  Fortunately, there were some solutions that became available at
approximately the same time that the design modifications were moving forward that made it
possible to put together a system that would provide the opportunity to conduct the proof of
principle experiment desired for the CSIRO trials.

The system configuration that was settled upon for the CSIRO experiments is shown in Table 2.
While it is not appropriate to elaborate herein the details that led to each point in the engineering
tradeoff process, a few comments are in order to help motivate the changes.  First, the desired
laser PRF of 200 Hz was not met as per Table 1.  This was driven mainly by the availability of a
suitable laser; the 100 Hz laser used had to be rented, and even then was only available for a few
months.  This stressed the sampling conditions somewhat, but the 100 Hz data rate still allowed

                                                
12 Fish Identification by Remote Sensing, B.R. Loya, TRW Technical Report 11435-6001-R0-00, 1968.  This
research produced a very careful measurement and analysis of the dorsal spectral response of several dozen live
pelagic species, and indicated that a non-Lambertian reflectivity may be appropriate, though such a non-Lambertian
model was not yet available at the time of this research.
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for 0.6m along-track sampling, which if used with a cross-track sampling that met or exceeded
the Nyquist rate, was still deemed acceptable for meeting the proof of principle criteria.

Second, the reduction in laser energy introduced by the higher PRF induced a need for better
light collection efficiency.  As a new CCD camera was to be needed anyway, the improved light
collection (nearly the factor of 10 lost in laser energy) was chosen by changing to a CCD having
nearly the same size as the laboratory system, but which could be coupled directly to the
phosphor of the streak tube via a fiber optic taper. Lastly, in order to collect the data coming
from the CCD camera at 10 times the rates of the laboratory system, the data acquisition system
was replaced with a ruggedized PC chassis that was populated with digital signal processing
(DSP) boards having the bandwidth and programmability needed to collect the image data and
facilitate its storage on a removable disk drive.

Table 2.  ASTIL configuration for the CSIRO experiments

Parameter STIL Laboratory SK Proposed ASTIL/CSIRO
Laser PRF 10 Hz 30 Hz 100 Hz
Laser Energy/Pulse 200 mJ 120 mJ 12 mJ
Field of view 15 degrees 15 degrees 15 degrees
Camera Format 256x256 128x128 256x256
Digital Resolution 12 bits 12 bits 14 bits
CCD Camera PI EFT512 PI EFT512 SMD 1M60
Angular Resolution 0.001 rad 0.002 rad 0.001 rad
CCD-Phosphor Lens coupled Lens coupled 2:1 fiber taper
Data Acquisition PC via PI controller PC via PI controller PC via DSP
Raw Data Rate 1.3MB/sec 0.9MB/sec 13.1MB/sec

The system having been defined and specified as in Table 2 above, in December of 1996 Areté
committed the internal research and development funds to procure components, integrate them
into the ASTIL configuration, and flight test the sensor in Tucson prior to shipping the system to
Australia in early March of 1997.  Figure 7 shows the installation of the ASTIL transceiver
section aboard the Partenavia Explorer used for Tucson flight testing. The associated system
block diagram deployed at that time is shown in Figure 5.  The corresponding aircraft
photograph with the Tucson test participants is shown in Figure 8.  For reference, Figure 9 shows
an example of sea surface energy densities for several different system configurations.

For the CSIRO experiment, CSIRO funded all of the aircraft and logistics support (directly, not
through Areté) and also covered the expenses of one test engineer for Areté.  Areté paid the
expenses for an analyst up to April of 1997, after which time the SK grant was available to
provide funding for on site and post-test analysis of the LIDAR data gathered for the tuna.

The experiments in South Australia lasted from March 26 through April 8.  A more detailed
description of the data collected was tabulated earlier, which showed the conditions for each data
set collected.  In excess of 30 flight hours were spent in the waters of South Australia, and
observations of captive SBT, dolphin, and both bay and open ocean conditions were made with
the ASTIL sensor.  An example of one of the captive SBT schools imaged is shown
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photographically in Figure 10.  A photograph of the CSIRO participants is shown in Figure 11.
The aircraft installation used in the CSIRO experiments is shown in Figure 12.

5.1.4 Data analysis for CSIRO SBT data

A significant amount of time was spent during and after the CSIRO experiment analyzing data,
and much of the first year of data analysis for this research leveraged the CSIRO SBT data
(hence, the prevalence of these data in this report).  As is typical, the data analysis emphasis
varied throughout the experiment, beginning with a review of the inherent sensor performance
from a radiometric point of view, followed by the optimization of in-flight settings, and finally to
the assessment of the tuna signatures collected with the sensor.

The radiometric calculations made early in the experiment indicated that the sensor was
operating within a factor of three of theoretically predicted values, which is an acceptable on site
error, given the uncertainties in environment and in the new sensor components that had not yet
been carefully reviewed in the laboratory for radiometric performance.  These radiometric issues
were revisited in more detail later in the overall ASTIL development effort, and in subsequent
SK work, which is discussed in a subsequent section of this report.

The calculations and data analysis for optimizing the sensor centered around the focus settings,
the installed pitch angle of the sensor, and the flight altitude required for adequately resolving the
SBT.  The focus settings had been accidentally left in the position needed for ground tests for the
first two flights; review of the data, combined with some in flight experiments quickly made this
clear and brought about a correction.  The pitch angle of the sensor was initially 2 degrees, but
was increased to 4 degrees in order to help reduce the ocean surface glint that was plaguing the
data.  When combined with a nose-up aircraft attitude of 4 degrees, this allowed for experiments
to attain an off-nadir incidence angle of up to 8 degrees, which helped reduce the glint
considerably.

Once the focus and glint issues had been addressed, the analysis of data could center more on the
acquisition of good quality tuna signatures.  To help this process, flights were made at 305, 150
and 75 meters altitude.  As these flights were all conducted over buoyed nets containing captive
SBT, the edges of the nets clearly marked the boundaries of the nets in the image data.  Thus,
one could unambiguously assess the performance of the sensor at the various altitudes as
concerned the quality of the tuna signatures.  The immediate and obvious result was that tuna
signatures were not visible at all from 305 meters, were marginally visible at 150 meters and
were very clearly present at 75 meters.  The difference in these altitudes was partly energy at the
surface, but most of the performance enhancement was due to the increased resolution that
accompanied the decreased range.  Consequently, subsequent experiments flew principally at 75
and 150 meters altitude, with the emphasis on the lower altitude.

An example image of an SBT signature in a single image of ASTIL data is shown in Figure 13,
where the image has been processed to remove artifacts associated with surface reflection and
exponential decay in the water.  The SBT is the bright portion of the image in the lower half of
the figure.
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The early conclusions from analyzing the imagery like that shown in Figure 13 were that: 1) the
SBT signature was slightly less reflective than the conservative estimates made in the
preparatory design calculations, and 2) the water in Boston Bay (where the tuna nets were kept)
was turbid enough to limit detection performance to the top ten meters or less13.  Figure 14 and
Figure 15 show photographs of a representative SBT from one of the fish schools that were
imaged.  The typical low dorsal reflectivity and corresponding high belly reflectivity is evident
in these photographs.

These early conclusions will be explained more fully in the findings sections of this report.
However, it is important to point out here that the findings from the on site CSIRO analysis did
impact subsequent experiments and helped greatly in their planning, and the data continued to be
invaluable in understanding the LIDAR/tuna issues relevant to school detection.

5.1.5 System enhancements

Many of the system enhancements incremental to the laboratory STIL configuration were
implemented prior to the experiments with CSIRO, as shown in Table 3.  Thus, most of the
planned enhancements, as originally proposed for the SK, were not needed.  In fact, based on the
CSIRO data analysis, it was clear that they would have been prohibitive for gathering useful data
on tuna.  However, several items were added after the CSIRO experiments that had been planned
but were not finished in time for the CSIRO tests, and some items were added over the course of
time because it became clear that they were needed for proper use of the ASTIL sensor.

Table 3.  ASTIL system enhancements prior to and subsequent to SK Grant effort

Item Date Implemented
100 Hz data acquisition Jan-Feb 1997
Fiber coupling for CCD camera Jan-Feb 1997
High speed, high resolution CCD camera Jan-Feb 1997
Ruggedized sensor and equipment racks Jan-Feb 1997
100 Hz laser Jan-Feb 1997
Realtime display May 1997
GPS data collection August 1997
Nadir-viewing video camera August 1997
100 mm f/2 objective lens August 1997
30 Hz laser September 1997
Coarse attitude data collection September 1997
GUI-driven sensor control January 1998
Flat panel touchscreen display May 1998
Realtime Kinetic GPS October 1998
Cmigit INS system October 1998
Polarizer October 1998

                                                
13 The apparent diffuse attenuation coefficient ranged from 0.12/m to 0.20/m in Boston Bay.
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A quick review of the funding allocated for sensor improvements under the SK effort and the
funds required to implement all of the above changes will lead one to the conclusion that these
could not have been implemented under this effort.  Only three were funded under the SK effort
(GPS data collection, nadir video camera, coarse attitude data); the remaining items were funded
under both ONR and Areté IR&D, as the ASTIL sensor is a derivative of an ONR STIL effort
for underwater imaging, and Areté has an interest in the airborne technology for commercial
uses.

While it is important to note that multiple sources of funding have made the SK experiments
possible, it is perhaps more important to note that the ASTIL development started prior to the SK
effort and continues to this day.  Furthermore, the SK effort has motivated improvements to the
sensor that help serve SK purposes and other applications as well.  Lastly, the findings in this
report will influence the ongoing developments with the ASTIL sensor, and will enable the
technology to be evaluated further in this area experimentation, as opportunities arise.

5.2 Model calculations for fish detection and sensor radiometric performance

The engineering efforts to modify the laboratory sensor, the preparations made for airborne
experiments, and the on site data analysis efforts involved model calculations that provide
theoretical estimates of performance.  While some model calculations were run as full image
simulations, most of the model calculations were radiometric in nature, as these are more tightly
coupled to assessing proper sensor behavior and the understanding of the physics of the tuna
detection problem.

The research originally proposed was to rely on simulations of at-depth fish schools generated
with an STIL simulator (developed under ONR sponsorship) that was to have been completed by
early 1997.  However, this simulator was not completed until early in 1998, and the development
of the ASTIL prior to SK funding reduced the motivation to perform such simulations in support
of design tradeoffs.  Nonetheless, some simulations of at-depth tuna were run using the gated-
LIDAR simulator (which was available) to gain a heuristic understanding of the effect of
multiple scattering upon the images of tuna.  So some use was made of simulated LIDAR
imagery; however, this was minimal and extensive use of such simulation was not justified,
given the objectives of this experiment (to gather data on tuna for assessing detection feasibility).
Furthermore, the data collected in the CSIRO experiments indicated that the ASTIL design had
the resolution performance required, and that further improvements could not be affordably
made in order to advance the objectives of this research.

An example of a radiometry calculation for the ASTIL sensor is provided in Figure 16.  Here, the
number of CCD counts measured per pixel is plotted as a function of depth for both the water
volume backscatter and a single pixel target having Lambertian backscatter characteristics and a
reflectivity of 2%.  This model calculation predicts a contrast (target-background/background) in
excess of 20.  This contrast was significantly in disagreement with the actual measured contrast
of tuna.
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5.3 Experiments

5.3.1 Hawaiian Islands experiment

The proposed SK effort featured a collaborative billfish experiment in Hawaii during August of
1997 (projected from a November 1996 start date).  However, owing to sensor improvements in
process and conflicts with the ONR effort (from which the ASTIL system borrows its
components), this experiment could not be planned.  However, the objective of conducting an
experiment in Hawaii remained, as the waters near Hawaii were known to be frequented by
schools of yellowfin tuna during the summer and early fall months.

The conduct of the experiment was very much like that of the CSIRO experiment, as it involved
the inevitable shipping, uncrating, ground testing and test flights needed for any remote
deployment of an airborne sensor.  The principal difference that was a significant hindrance to
the effort was the difficulty in obtaining a ready-to-fly aircraft for the experiments.

Much effort was expended in finding a fixed based operator (FBO) who could support the test,
helping the FBO make modifications to his aircraft, and also cajoling he and the local FAA
representative into enabling the experiment to proceed14.  Nevertheless, the experiments were
conducted throughout the islands, as portrayed graphically in Figure 17.

From Table 3 it can be seen that the 30 Hz laser was integrated in time for this experiment.  The
reason the 30 Hz laser was chosen was because it could provide a factor of ten times more laser
energy per pulse than the 100 Hz laser could.  This selection would seem to impede good data
collection if the objectives were the same as for the CSIRO experiment.  However, the objectives
were not the same, as the SK effort is concerned much more with schools than individual fish
behavior, so that one need only about sample throughout a school, and not across an individual
fish. Thus, the along-track sampling was approximately 2m, and the cross-track sampling was
unchanged with respect to prior ASTIL experiments.

The flights shown in Figure 17 represented 30 hours of flight time in the Piper Aztec operated by
Commercial Flyer, Inc., of which 28 were spent in search of schools or ferrying to areas of
interest.  Following the last day of flying, the sensor was uninstalled, re-crated and shipped back
to Tucson.

5.3.2 Data analysis for Hawaiian experiment

The data collected in Hawaii had only a few probable tuna signatures – there were no schools of
tuna detected, and only a few times during which a school of possible tuna were suspected, based
on the proximity of birds at the surface.  Thus, the data analysis effort consisted of reviewing
data from other species and checking the radiometry of the data for consistency with theoretical
calculations.

                                                
14 The technical monitor for this effort within NMFS was significantly instrumental in helping make this test a
reality, as the hurdles presented by the FAA process were many, and the number of eligible FBOs in the Islands is
small.
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The non-tuna species imaged was a school of akule imaged on September 17.  Some probable
tuna were also imaged on September 24, and these were reviewed for consistency with other data
sets.  The radiometric calculations were made to assure proper sensor operation, and these
yielded no significant discrepancies between theory and experiment.

5.3.3 New England Aquarium experiment

Ideally, the experiment in Hawaii would have yielded enough imagery of ETP tuna to use in
assessing the performance of the ASTIL sensor for the bycatch reduction problem.  However, as
noted above, only a few potential tuna signatures were obtained, precluding any meaningful
analysis regarding the optical characteristics of tuna in the context of a school.  Thus, an
additional experiment was planned, after consulting with NMFS and NOAA scientists doing
research on tuna-related issues.

The objective of the experiment was to find a tuna schooling event or migratory pattern that was
reliable and had been studied adequately to allow an experiment to be planned and executed
within a period of 3-4 weeks, so that costs could be minimized.  Also, it was desired to image
schools of fish that could be unambiguously identified from the air, and which could be readily
spotted from the aircraft, if possible15.

The first possible opportunity was an experiment with NMFS in collaboration with Dr. Barbara
Block (Monterrey Aquarium), who was studying GBFT near Cape Hatteras.  These tuna have the
features mentioned above that aid in conducting airborne LIDAR experiments.  However, the
experiment was in the spring (March/April) and the notoriously poor weather in that region
during that time of year motivated the consideration of a subsequent opportunity.

That opportunity was an experiment conducted with Dr. Molly Lutcavage (New England
Aquarium), who has been conducting aerial surveys of GBFT for several years, and who has an
ongoing interest in using LIDAR for estimating stocks.  This experiment could be conducted
anytime during the summer and early fall months; thus, as the weather in the waters near Cape
Cod is amenable to airborne experiments, a period in July was selected for the experiment, based
on previous observations of tuna, aircraft availability and sensor availability with respect to
ongoing ONR STIL efforts16.

The experiment was conducted jointly with the New England Aquarium, as Dr. Lutcavage set up
coordination with the local spotter pilot’s association (Mr. Jonathon Mayhew), and a few local
fishermen.  The cooperation amongst these fishery players were exceptional, and made it
possible to obtain the data that was gathered.  Table 4 shows the support team that made the
GBFT experiments possible.

                                                
15 This was not a new issue, of course, but prior experiments had been planned a bit naively, it having been assumed
that nearby fishermen would be able to assist in the identification process.
16 This was less of a concern in this experiment than previous ones, as the ASTIL sensor hardware was a backup to
the newly developed EOID sensor hardware, and not the principal means of experimentation.
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Table 4.  Support for New England GBFT experiment

Support Role Name and Organization
Local support coordinator Dr. Molly Lutcavage, New England Aquarium
Pilot and aircraft provider Mr. Tim Flynn, AeroMarine Survey, Inc.
Spotter Mr. Wayne Davis
Spotter Pilot’s Assn. Liaison Mr. Jonathon Mayhew, President of NESPA
Boat support for aircraft overflight NESPA volunteer spotter pilot
Aircraft support for aircraft overflight NESPA volunteer spotter pilot
Hangar support and FAA clearance Columbia Air Services (New London, CT)

Aircraft installation and integration began on July 20 and was completed on July 24, when the
first check flight was over the waters near New London, CT.  The data flights were all made in
the vicinity of the southwest end of Cape Code.  These flights began July 25 and were completed
July 29.  Originally, 30 flight hours had been planned for this experiment.  However, because of
the difficulties experienced with aircraft logistics17 and the anticipated onset of storms, the
experiment was ended after 19 hours of flight time had been expended, which was very soon
after the first (and only confirmed, to date) GBFT school data were observed (approximately 14
of the 19 hours were spent directly on tuna spotting efforts).  So while only a small portion of
data was collected with respect to what had been hoped, the data that was collected proved to be
adequate, as will be shown later in this report.

The sensor was uninstalled, crated, and shipped back to Tucson on July 31, concluding the effort
after 11 days.

5.3.4 Data analysis for GBFT data

The data analysis for the GBFT data was begun immediately after the experiment ended, in order
to obtain some indication of the adequacy of the data set for use in making the assessment that
was the goal of this research.  Some image processing and 3D reconstruction work soon yielded
a set of fish signatures, 2D images and 3D images that led to the conclusion that data of adequate
statistical significance and of sufficient quality had been obtained in the GBFT experiment alone
to finish the research.  Summary notes and data files were generated for the GBFT experiment in
preparation for the final report effort, which would have to wait until December to resume, as
there were personnel conflicts with the STIL effort for ONR, the primary sponsor of the STIL
research.

The analysis conducted for the GBFT data, once resumed, began with a hand-tabulation of
individual signatures and associated data, which formed a database representing “ground truth”
for the subsequent analysis of the detection of the GBFT.  Signal processing tools from the ONR
effort proved invaluable in reducing the data and extracting the relevant fish LIDAR signatures
needed to assess the optical properties of the fish and for comparing the reference database to
subsequent automatic detection computations.

                                                
17 For instance, installation was plagued by FAA regulatory hindrances, and aircraft positioning greatly impeded the
imaging of schools.  The lessons learned section has some general comments in this regard.
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5.4 Development of a performance model based on experimental outcomes

With a database of fish LIDAR signatures and associated image and school statistics in hand, the
analysis proceeded to develop a performance model based on a probability density function for
the LIDAR signals associated with both the fish in water and the water without fish, representing
the target and background for subsequent signal analyses.  The formulation of the performance
model was developed, in keeping with binary hypothesis testing, with an eye on predicting
probabilities of detection and false alarm.  The purposed of the model was to allow performance
calculations to be made as a function of new sensor configurations, so that some estimates could
be made for operational ASTIL sensors (the present experiments being conducted with a sub-
optimal prototype), without building new hardware and having to conduct airborne experiments
for each sensor parameter variation.

As part of the performance model development, a target detection algorithm was built to measure
the actual performance using the data collected on GBFT.  Such a measurement would serve as a
baseline from which modeled performance estimates could be made18.  This was based on a
matched filter detection routine that computed the ratio of signal (fish) to noise (water without
fish), or the signal to noise ratio (SNR).  The results of this performance measurement were then
used to generate histograms of signal and noise, in addition to a ROC, which illustrates the
tradeoff between probability of detection and the associated probability of false alarm.

Having developed a performance model accompanied by measured performance on GBFT, the
performance model was exercised jointly with a radiometric sensor model (developed over the
course of the sensor development) to explore the sensor design parameter variations for an
optimum operation point for detecting tuna.

5.5 Generation of LIDAR fish image database

In the proposed research, it was hoped that enough observations of schools would be obtained to
compile a LIDAR database of school and/or fish signatures.  As such a plethora of data were not
obtained, there was little need to make the effort to formalize a database.  Rather, select portions
of data have been isolated and processed, in the hope that these can be made available on the
world wide web to those researchers that are actively engaged in airborne LIDAR experiments.

5.6 Project management

1. Areté Associates
a. Andrew Griffis:  Principal investigator, R&D engineer, director of flight tests, data

analyst for field experiments.  Planned and coordinated the activities of the engineers and
scientists prior to and during field tests, and also during post-test data analysis.  Principal
author of the final report.

b. Elisabeth Bryan:  Data analyst and scientific programmer.  Developed high level
language routines for analysis of image data, including the generation of graphical output.

                                                
18 So the measured performance can be viewed as the tie-point from which performance is extrapolated using the
analytical performance model.
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Provided quick-look assessment following experiments and performed the analysis of
fish LIDAR signatures needed for performance modeling.

c. Jeffrey Plath:  System software and sensor engineer.  Developed real-time software for
high speed data acquisition and supported field tests as a sensor operator and field
engineer for CSIRO and Hawaii trials.

d. William Ryder: Sensor operator and field engineer.  Provided logistics support for sensor
assembly, disassembly, shipping and aircraft operation for New England experiment,
including system modifications after and during testing.

e. Glen Redford:  System software support for upgrades to software for real-time display
and GPS data logging.  Added GUI functions to C/C++ routines running on host
computer. Supported pre-flight laboratory test support.

f. Brian Redman:  Systems analyst.  Developed performance model based on observed tuna
signatures and ocean ambient data, which served as a basis for both the predictive
statistical model and the observed detection measurements.  Provided graphical
performance estimates for final report.

2. Commercial Flyer
a. Clyde Kawasaki:  Co-owner.  Provided a Piper Aztec for experiments and hangar space

for equipment storage and install/uninstall operations. Assisted with obtaining FAA flight
authorizations.

b. Wally Suenaga: Co-owner and spotter pilot.  Flew aircraft and aided in flight planning for
finding schools of fish.

3. Aero-Marine Surveys
a. Tim Flynn: Owner and pilot.  Provided a Piper Aztec for experiments and hangar space

for equipment storage and install/uninstall operations.  Assisted with obtaining FAA
flight clearances.  Flew aircraft with input from co-pilot spotter.

b. Columbia Air Services:  hangar, FAA and aircraft logistics.  Provided aircraft services
and engineering support for obtaining FAA clearances.

4. NMFS:  Chuck Oliver.  Provided research support for early tuna pre-test investigations (i.e.,
literature searches), aircraft and aircraft provider research and coordination; provided liaison
support for FAA clearance in Hawaii; provided points of contact for experiments conducted
in the United States. (US Gov’t funding)

5. New England Aquarium:  Molly Lutcavage (New England Aquarium funding). Aided in
experiment planning, coordination with fisheries owners, and review/analysis support prior to
and following the trials.  Coordinated interaction with spotters and boat owners.

6. New England Spotter Pilot’s Association:  Jonathon Mayhew (volunteer).  Provided support
for test planning and spotter coordination/planning prior to and during the experiments.

7. CSIRO:  Dr. Ann Cowling.  Provided aircraft logistics, experiment planning, coordination
with fisheries owners, and review/analysis support prior to and following the trials.  (CSIRO
funding)

8. Tasmanian Air:  Supplied (under contract with CSIRO) pilot for Aerocommander 550.
Provided aviation with support from spotter. (CSIRO funding)

9. Derek Hayman: spotter pilot for SBT fisheries in South Australia.  Provided aviation and
spotter services. (CSIRO funding)
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6. Findings

The purpose of this part of the final report is to communicate the “bottom line” results and to
present the rationale and/or data that led to those results.  Consequently, the following discussion
will begin with what amounts to raw data and proceed to develop that raw data into meaningful
performance predictions based on robust physical and mathematical analyses.  The raw data will
be presented briefly as the experimental effort is delineated, and elaborated further in the context
of the data analysis.

The raw data for the ASTIL sensor are two dimensional (2D) data formed by imaging and range
resolving the backscattered light from a single fan beam pulse from the ASTIL laser.  Most of
the analysis presented here will deal directly with the 2D data and transects of these data, which
are typically one-dimensional (1D) range-slices.  The reason for this is that the performance of
the ASTIL system that can be addressed through sensor improvements is driven largely by the
performance associated with a single image.  The single image performance, in turn, is best
measured in terms of the depth-dependent performance of a single region in the cross-track
direction, or a 1D image slice in depth.

The 3D image data presented here are mainly a tool for understanding the school shape and
packing density, and also for aiding in the understanding of how the ASTIL sensor can be used
to studying and quantify fish school behavior in general.

The emphasis in the data presented here will be the GBFT data collected in New England, as this
is the highest quality tuna data collected during this effort.  The LIDAR signatures are prominent
enough to study, measure and draw conclusions from, and they are of sufficient quantity to
provide statistical significance.  For these reasons, the GBFT data form the backbone of this
report.  Data from the other experiments will also be shown, but will not be as prominent as the
GBFT data.

Where necessary, the discussion of issues concerning other LIDAR sensors is included, for the
sake of clarity in understanding the issues relevant to the present investigation, and also any
research that may follow.

The presentation of results will conclude with what amounts to a “lessons learned” discussion, as
some noteworthy insights have been gained from the conduct and analysis of these airborne
LIDAR trials.

6.1 Understanding ASTIL image data

The purpose of this section is to provide a brief tutorial or introduction to the data that is
generated with the ASTIL sensor.  Earlier in this report, the basic principles of operation were
expounded.  This section will extend that discussion so as to enable the reader to more fully
understand the material presented in subsequent sections.

As shown in Figure 18, an image that has both surface and bottom backscatter in it, the ASTIL
sensor has raw data that are two-dimensional images having range along one dimension and
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azimuth or cross-track as the other dimension.  These are usually shown as the vertical and
horizontal dimensions, respectfully.  The image shown in Figure 18 has several features to note.
First, the surface return19 has several bright spots in it corresponding to regions across the ocean
surface that tend to collect and focus the backscattered light with high intensity back towards the
ASTIL receiver.  This can be mitigated through the use of a polarizer on the receiver objective
lens that rejects the co-polarized return from the air-sea interface, thereby yielding near-surface
images that are dominated by water volume backscatter instead of the (sometimes) excessive
enhanced backscatter that can be obtained from surface wave focusing and smooth water
surfaces that are perfectly perpendicular to the sensor optical axis.  Such a polarizer was not
implemented at the time these data were collected but has been demonstrated since then with
gratifying results.

Second, the image shows return from the bottom (of Boston Bay), that is less intense and
removed in range from the surface return.  The return is less intense because the water introduces
exponential attenuation that increases with increasing depth.  The return is also less intense at the
bottom due to the fact that LIDAR return signals generally decrease as the square of the range
from the LIDAR; however, this range dependence is not nearly as pronounced as the exponential
decay.

Third, the surface return appears to be wider in the range direction than the bottom return.  This
is easier to see if a slice along the range direction is taken through the image in Figure 18.  Such
a slice, or range-transect, is shown in Figure 19.  It can be seen in this figure that the return
signal from the surface region extends in depth and appears to be slightly wider than the return
from the bottom.  This is due to the fact that the backscattered light from the surface-only portion
is actually a combination of the surface return with the volume backscatter from the water
molecular and particulate constituents, leading to a return that is peaked at the air-sea interface,
and decays exponentially in depth.  The bottom return is simpler, as it is just a replica of the
transmitted laser pulse, scaled in intensity by the exponential attenuation of the water and the
square of the distance from the transmitter20.  This distinction between surface, water volume
backscatter, and solid objects as pertains to the LIDAR return, is important for the reader to bear
in mind as other images are studied. This is because the return signal from a fish in the water will
be distinct from the water volume and surface signals in the same way that the bottom return is
distinct from these signals.  The main exception will be the magnitude of the fish return (smaller
than the bottom, for tuna) and the size (less cross-track extent), as the imagery to be shown soon
will show.

Now while the ASTIL raw data are fundamentally two dimensional in nature, the sensor does
provide three-dimensional information by stacking images in a pushbroom fashion, so that the
third dimension is formed through repetitive acquisition of 2D images.  A sequence of images
that is intuitive to view is from the data collected in Hawaii.

Figure 20 shows a sequence of eight 2D images collected during the Hawaii experiment of
September 1997.  These images are of the same format as the images shown in Figure 18, except

                                                
19 By “return” is meant the light that backscatters, or returns, to the receiver from an object that was illuminated with
the sensor laser.
20 This is a paraphrase of the LIDAR range equation.
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that the cross-track extent and bottom depth are greater in Figure 20, as noted.  The school of fish
is absent in the first image, begins to appear in the upper left hand side near the surface in the
second image, is very obvious by the fourth and fifth images, and is fading out by the eighth and
last frame.  It may not be immediately obvious from the 2D images, but the way the cross-track
extent of the akule school changes as the sensor samples along it is indicative of a nearly circular
disc of fish in the water.

The disc-like shape of the school is much easier to see when the image sequence of Figure 20 is
stacked together into a 3D volume data set, and rendered as a 3D perspective image shown in
Figure 21.  This typifies the objective of the ASTIL sensor – resolving objects at high resolution
in three dimensions.  The size of the school is approximately 13 x 14 meters across and on the
order of 1m in depth, for about 182 cubic meters of fish.  The school was not very deep,
measuring about 3.5 meters average depth.  The ocean bottom was at 25m depth, and is faintly
visible in the 2D images, whereas in the 3D images one can readily discern not only the bottom,
but also the shadow of the ASTIL-illuminated disc of akule.  Hence the ability to combine 2D
images into 3D images greatly enhances the understanding of the submerged object(s) being
studied.

Obviously, given a 3D data set, one can also study features within that data set with 1D and 2D
sections made along arbitrary axes.  For the data being evaluated in this research, the sections
tend to be in the along-track, cross-track and depth dimensions.  These sections are used most
often to aid in the understanding of the optical properties and sizes of the fish being imaged, and
for assessing the sensor radiometric accuracy.  These techniques, and the 2D and 3D images
from which they’re drawn, will be elaborated further in the balance of this report.

6.2 ASTIL observations of tuna

The purpose of this section of the report is to display and discuss the data gathered with the
ASTIL sensor for the three species of tuna imaged in this investigation.  The data displayed here
will be primarily 2D in nature, with discussion focusing on both the 2D and 1D nature of the
LIDAR signature of the tuna data.  Only one tuna species will be shown in three dimensions, as
only this set is of sufficient signal quality to readily lend itself to 3D imaging without extensive
signal processing and fine-tuning of image data.

The three species imaged, their locale, and the general nature of the respective LIDAR data are
tabulated in Table 5 below.  From this table it can be seen that the SBT imaged were in water
that was twice as turbid as the open ocean water, as indicated by the diffuse attenuation
coefficient (K) that non-captive tuna would inhabit, and they were smaller than the GBFT by
more than a factor of two.
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Table 5.  Tuna species imaged with ASTIL sensor

Species Location of
Experiment

Water
Quality

Size
(kg, WxL)

Quantity
Imaged

Depth

Southern bluefin
tuna (SBT)

Port Lincoln, South
Australia

Bay/moderate
K=0.15/m

10-40kg
0.1x 0.6m

500+ 3-8m

yellowfin Tuna Oahu, Hawaii Clear/ocean
K=0.07/m

Unknown 2-3 3-4m

Giant bluefin  Tuna Cape Code,
Massachusetts

Clear/ocean
K=0.08/m

150-300kg
0.3 x 2m

70+ 2-6m

These factors caused the analysis of data to rely more on the GBFT data than on the SBT data,
though both were important to the overall experimental effort.  The SBT were captive, so that the
association between LIDAR data and tuna in the water was unambiguous. The GBFT were not
captive, but they were identified visually by multiple spotters and surface craft during the
airborne experiments, so these are also high confidence data as concerns the identification of the
fish species. The yellowfin data were clearly too sparse to work with, and they were not as
confidently identified with tuna as were the SBT and the GBFT.  However, the fact that the
yellowfin data were not the prime focus of the data analysis does not negate the applicability of
the analysis to the yellowfin species.  Fishermen and those associated with the fishing industry
will confirm the visual (optical color/reflectivity) similarity of the species21, and common
placement in the food chain with similar predators would tend to lead one to the conclusion that
the optical properties of the tuna species would be similar22.  As will be shown, the yellowfin
data collected in this research are not abundant enough to draw statistically significant
conclusions with.  However, they do serve to support the other observations indicating that the
species are optically similar, and therefore can be studied as such.

The following discussion will review data for GBFT, SBT and yellowfin.  The GBFT data will
be used to derive representative optical properties of tuna, and so will be reviewed more at
length.  The SBT data will be shown for comparison and contrast with the GBFT data, and the
yellowfin data will be shown mainly as a single point of comparison with the other two species.

6.2.1 Giant bluefin tuna (thunnus thynnus) data

Approximately 14 hours (of 19 total flight hours) were spent in airborne experiments targeting
the GBFT fishery in New England waters near Cape Cod, Massachusetts.  Of these hours, only
less than one minute of real time data was gathered over a school of tuna, though many
opportunities were available; the difficulty, as was pointed out earlier, lay in the type of aircraft
used and the associated logistics of the sensor installation.  Nonetheless, the small amount of

                                                
21 Discussions with Derek Hayman in April 1997 (spotter pilot from Port Lincoln, S. Australia), Wally Suenaga in
September 1997 (spotter pilot from Oahu, HI), and fishermen in both S. Australia and Hawaii.  Video footage of
yellowfin provided by NMFS and comparison with photographs of SBT also indicate optical similar from the dorsal
viewing angle, in addition to the evident direction-dependent reflectivity, and perhaps color, of the tuna.
22 Fish Identification by Remote Sensing, B.R. Loya, TRW Technical Report 11435-6001-R0-00, 1968.  The
measurements presented in this report indicate very clearly that the dorsal reflectivity that is evident with the naked
eye is confined to a fairly small range of single digit reflectivities, meaning that within factors of 2, the problem will
quite likely be driven by the physical size of the tuna, and not the factors that cause marketplace differentiation.
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time for which the tuna were imaged was adequate to draw meaningful conclusions about
LIDAR and tuna, owing mainly to the quality of the LIDAR tuna signatures gathered.

A map showing the proximity of the GBFT school to Cape Cod is shown in Figure 22.  The
southwestern locations are near New London, CT, from which the experiments were based.
Examples of unprocessed GBFT data collected with ASTIL were shown in Figure 23 and Figure
24, and several processed images are also shown in accompanying figures.

6.2.2 Southern bluefin tuna (thunnus maccoyii) (SBT) data

Approximately 30 flight hours were spent in South Australia (this research supported only the
analysis of data for those experiments).  Image data of SBT were collected for captive schools of
fish in Boston Bay, which is the harbor region for Port Lincoln, South Australia.  An example of
ASTIL data for SBT is shown in Figure 13.

6.2.3 Eastern tropical pacific (ETP) yellowfin data

Only one or two instances of yellowfin tuna were imaged during the Hawaii experiment in 1997.
These were collected near a buoy slightly to the north of Pearl Harbor.  An example of ASTIL
data for these is shown in Figure 25 and the corresponding contrast estimate is shown in Figure
26.  Approximately 20 hours of flights were committed to searching for yellowfin both near and
around the Hawaiian Islands, without a single spotted school of fish for which image data could
be collected.  The imagery collected were obtained incidentally while spotting near a buoy.

6.3 Tuna contrast and resolution considerations

Unlike the schools of akule or other pelagics like sardine or krill, schools of tuna do not pack
closely together so as to form an optically continuous amorphous mass of fish that can be
detected by a LIDAR with resolutions close to those of the ASTIL sensor23.  Thus, detection of
single tuna becomes an issue of concern for a LIDAR.  Also, the tuna do not have as high a
reflectivity as some of these high-packing-density pelagics.  Both of these issues have a direct
impact upon LIDAR performance, as the LIDAR depends upon the difference between water
backscatter and fish backscatter to determine the presence of a fish.  The quantity that one can
measure in an image that describes this difference is known as the contrast.

Image contrast for a LIDAR viewing submerged objects in the water is determined by the water
reflectivity, the reflectivity of the object being imaged, and the resolution of the LIDAR.  For an
imaging LIDAR, the resolution is determined by a pixel and range bin size; for a non-imaging
LIDAR (i.e., flying spot) the resolution is determined by the spot size and the range bin
resolution.

                                                
23 It is recognized that, if fine enough resolution were applied to the problem, even the high packing density fish
such as sardine could be distinguished, though not necessarily from an airborne platform.  For instance, Figure 28
shows imagery for small fish in which the sensor is providing cm-level resolution at an underwater standoff range of
8 meters.
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Consequently, the ideal non-imaging LIDAR would be designed so that its beam would be either
fully occupied by the tuna, or fully occupied by water.  Thus, if the fish reflectivity were
sufficiently bright with respect to water, the optical distinction between fish and water would be
maximum – the contrast would be maximized.  Likewise, an ideal imaging LIDAR (streak-tube
or gated ICCD) would be designed so that the tuna fully occupied at least one pixel in an image
so that adjacent water-only pixels would be readily observed in contrast to the (brighter) tuna-
related pixel.

The water reflectivity is a well-studied parameter that can be treated as a constant once the water
type is known, for the purpose of first-order calculations.  The calculations presented here will
use a clear ocean water type that has a volume backscatter coefficient of β(π) = 0.0007/m.
Estimates of tuna reflectivity vary from 1% to 13% depending on what source was consulted24 25.
For the purposes of this discussion, values of 1.5% and 10% will be used for bracketing the
reflectivity at low and high boundaries; the former value is the correct one, though the latter
value was used in some of the calculations made early in this endeavor.

For a target viewed against a background, the contrast is determined by the difference between
the target and the background, normalized to the background.  For the present case, the fish is
represented optically by the target effective reflectivity and the background is determined by the
water volume backscatter.  Mathematically, this is given by

                                                                   C = (T - B) / B                                                      (Eq. 1)

Where C is the contrast, T is the target and B is background.  From this equation, it is clear that
in order to obtain high contrast (good image quality), one must maximize the difference between
the target and the background.  Some substitutions will allow the target and background
quantities to be expressed in terms that relate more closely to the sensor and water parameters of
interest.  Let

                                                                          T = ρe                                                                                        (Eq. 2)

and

                                                                    B = β(π)  ⋅ ∆z                                                      (Eq. 3)

Here ∆z is the range resolution (depth bin size) for the LIDAR and ρe is the effective reflectivity,
or the reflectivity apparent to the LIDAR, while β(π) is the aforementioned volume backscatter
reflectivity associated with the water column being illuminated with the LIDAR transmitter (the
laser).  Substituting into the expression for contrast, we now have fish contrast given by

                                                        C = (ρe - β(π)⋅∆z) / β(π)⋅∆z                                             (Eq. 4)
                                                
24 Oftentimes, the tuna are assumed to be similar to other pelagics, leveraging work such as that presented by B.R.
Loya referenced earlier.
25 Evaluation of the Capability of the Experimental Oceanographic Fisheries LIDAR (FLOE) for Tuna Detection in
the Eastern Tropical Pacific, J.H. Churnside, et. al, NOAA Technical Memorandum ERL ETL-287, March 1998.
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In the above it is assumed that the fish fills the entire resolution element of the LIDAR, or in the
language of imaging systems, it completely fills the pixel(s) in which it is observed.  In such a
case, assessing the optimality of the LIDAR for observing individual fish becomes a matter of
setting the resolution to resolve the fish and then examining the impact of fish reflectivity and
sensor optical efficiency. However, it is not always the case that a LIDAR can achieve arbitrarily
high resolutions.  In fact, high resolution in any remote sensing system comes at a price and will
have attendant performance tradeoffs with respect to lower resolution systems having
comparable optical efficiencies.  Thus, there is strong motivation to build only enough resolution
into a LIDAR to provide the data that are needed.  As a result, it is important to treat the case for
which the fish to be imaged are under-resolved.

In order to represent the cases for which the fish does not fill the entire pixel, we need to add
scale factors to account for the part of the pixel occupied by the target and that part which is just
water.  This can be achieved by introducing a fish-area parameter, Af, that represents the LIDAR
cross-section of the fish.  The LIDAR cross-section for the fish will be assumed to be the same
as the physical cross section of the fish in a plane normal to the LIDAR angle of viewing.  For a
nadir-viewing airborne sensor that is directed toward laterally swimming fish, this cross section
is the same as the profile of the fish viewed from the dorsal region.  The expression for contrast
can now be written as

                           C = [ρe Af / Rxy + (1 – Af / Rxy) β(π)⋅∆z – β(π)⋅∆z]  /  [β(π)⋅∆z]                (Eq. 5)

Which readily simplifies to

                                           C = (Af / Rxy) [ρe  – β(π)⋅∆z ]  /  [β(π)⋅∆z ]                                  (Eq. 6)

where Rxy is the area at the water surface for a sensor resolution element26 and the ratio Af / Rxy
is the fractional area inside the resolution element occupied by the fish.

In its simplest application this expression provides the LIDAR contrast for a single fish in the
water.  In order to represent multiple fish in the water, or a given water column, it is necessary to
include the number of fish per volume resolution element.  Letting the number of fish be
represented by N, and making this modification, the contrast equation yields

                                           C = N(Af / Rxy)  ⋅ [ρe   – β(π)⋅∆z ]  /  [β(π)⋅∆z ]                           (Eq. 7)

This expression can be directly evaluated for the dependence of contrast upon the parameters in
the right hand side and a sense of the optimal point gained graphically.  Such a plot is provided
in Figure 27.  The selection of parameters was made to be consistent with realistic conditions as
much as possible.  The figure shows three plots, each for a different packing density, D.    The
fish area used was 0.05 m2, which follows from a similar argument to that posed by Hunter27,
                                                
26 So the volume resolution element, or voxel, is Rxy∆z.
27 Evaluation of the Capability of the Experimental Oceanographic Fisheries LIDAR (FLOE) for Tuna Detection in
the Eastern Tropical Pacific, J.H. Churnside, et al, NOAA Technical Memorandum ERL ETL-287, March 1998.
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where a box-shaped 20kg tuna is used for a case study, and for which the box dimensions were
10 x 20 x 100cm.  The corresponding dorsal-view area for the present research would then be 10
x 100cm.  However, the calculations presented here will use half the area, as the actual shape of
a fish bears little resemblance to a rectangle and can safely be approximated by an inscribed
parallelogram filling half the circumscribed rectangle.  Hence the fish area used is 0.05m2.  The
depth resolution used is 1m.  The ASTIL system and some flying spot systems can provide sub-
meter depth resolutions.  However, the equivalent range of a typical commercial laser is much
closer to one meter (corresponding to approximately 9ns in water), so that in order to capture all
of the photons and enhance the contrast, the laser-driven range resolution is a better choice.
Finally, the water volume backscatter used in these calculations is 0.001/m, which is closer to a
coastal condition than that of the ETP, but as most of the data gathered in this research was
gathered in coastal regions, such a parameter selection will allow for a more direct comparison
when necessary.

If the contrast in Equation 7 is plotted as a function of pixel area, the data in Figure 29 result.  It
is evident in this graph that, even when the fish reflectivity is 10% (as opposed to the observed
value of 1.5%), the resolution element must have less than 1m2 of area in order to obtain contrast
adequate for generating detectable signatures28.  And when the reflectivity is 1.5%, the required
resolution is a few tenths of a square meter, which leads to pixels having dimensions of 20-30cm
on a side.

As the minimum requirements for contrast are met when the numerator is nonzero, it is worth the
effort to look briefly at the numerator expression in order to determine the conditions necessary
to make the numerator nonzero.  Specifically, one can examine

                                                         ρe  – β(π)⋅∆z = 0                                                             (Eq. 8)

From this we see that contrast is maximized on the positive extreme by making ρe as large as
possible.  On the negative contrast extreme, contrast is maximized by letting ρe approach zero.
Knowing in advance that ρe is indeed small, one is tempted to conclude that ∆z can be made very
large (low range resolution), thereby providing relatively high contrast images in shadow
(negative contrast).  However, this decrease in range resolution will reduce the contrast per
Equation 7.  Also, the shadow signature of the fish, or its negative contrast image, will be
preferable to the positive contrast signature only near the water surface, as multiply scattered
photons diffuse away negative contrast images as fish depth increases.  But the near surface
region is precisely where the fish are least likely to be found, statistically speaking29.  Thus, the
objective in maximizing contrast will be to make ρe (fish backscatter per pixel) as much larger
than β(π)⋅∆z  (volume backscatter per pixel) as possible.

Returning to Equation 8, one can manipulate the parameters a bit in order to separate the sensor-
dependent parameters of interest from the fish parameters.  The sensor parameters of interest are
embodied in the resolution terms, Rxy and ∆z.  The fish parameter of greatest interest for this
                                                
28 The finding of this research is that fish detection is possible for contrasts approaching 4, but becomes marginal
below that value.
29 Study of tuna behavior by the use of sonic tags, Newsletter Enyo (Far Seas) Fisheries Research Laboratory,
Shimizu 44:1-5 (this source from Hunter and Churnside, NOAA Report LJ-95-02).
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analysis is N, the number of fish in the resolution element.  The packing density for a single
sensor resolution element (a voxel), in fish per unit volume, is given by

                                                          D = N / (∆z Rxy)                                                            (Eq. 9)

If we solve for N and substitute, a new expression can be obtained for contrast

                                              C = D Af   ⋅ [ρe   – β(π)⋅∆z ]  /  β(π)                                        (Eq. 10)

In this expression, the sensor resolution is buried in the packing density.  However, this form for
contrast allows for some understanding of the limiting contrast without immediate regard to a
sensor resolution.  For example, if a packing density is assumed, contrast can be plotted as a
function of the effective reflectivity, as shown in Figure 27 where a reflectivity value of 1.0 is
the maximum (100%).  In this case, it is implicit that either the size of the resolution element or
the number of fish per resolution element will be changed to produce the contrast plotted.

The calculations shown in Figure 27 and Figure 30 emphasize the same point: sub-meter
resolution is required in order to use a LIDAR for directly studying tuna that are observed in
schooled formations.  Otherwise the data collected will not have enough contrast to indicate the
presence of fish when indeed fish are present in the sensor field of view.  The way this was
applied in the sensor development was to create a requirement to maximize resolution.  Since the
streak tube already provided very good depth resolution, this led to a focus on improving the
cross-track and along-track resolutions over that of the laboratory system.

This finding regarding the resolution requirements can be extended beyond that which was
known prior to the experiments if we take advantage of the knowledge gained from this
experiment and calculate resolution requirements based on observed conditions.  The SBT and
GBFT schools observed with the ASTIL sensor had LIDAR-derived apparent packing densities
of 0.16/m3 and 0.04/m3, respectively30.  As the SBT observed were in keeping with the
hypothetical 20kg tuna being examined in this analysis, the 0.25/m3 packing density used in the
calculations above can safely be used as a representative number (especially as there may be
undetected tuna in the school).  The median LIDAR contrasts that were observed for the SBT
and GBFT were 2.7 and 4.4, respectively.  However, the SBT were observed in more turbid
water31, and once this is accounted for, the GBFT data and SBT data come into close agreement
for more typical expected open ocean water conditions.  Thus, a contrast value of 4.4 can be used
as value representative of the problem.

Figure 30 shows the relationship between tuna reflectivity and lateral resolution for parameters
suitable for a 20kg tuna, based on the data collected in this experiment.  Both JWT IB and JWT
                                                
30 The data from which these numbers were derived will be shown in a subsequent section of this report.
31 The assumption here is that the turbidity increased the scattering so as to reduce contrast by spreading the
backscattered light, and the increase in water volume backscatter decreased the contrast by increasing the
background contribution with respect to the direct backscatter from the tuna.  The SBT were observed in water
measured close to JWT Coastal-1 (β(π) = 2.7e-3) and the GBFT were observed in water measured close to JWT II-
III (β(π) = 1e-3 to 1.8e-3), so that a 2.7X-1.5X contrast difference would be expected, all other things being the
same.  This implies that the contrast of 4.4 would have been reduced to the range of 0.6 to 2.9, which spans the
observed value of 1.5 for the SBT.
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II waters are shown, the former being representative of ETP conditions, and the latter case
representing the waters typical for the GBFT data shown in this report.

Given that the effective reflectivity of tuna has been estimated to be between 1% and 2%, the
required resolution is a few tenths of a square meter.  Specifically, the second plotted point in the
lower left hand corner of that figure corresponds to 1.5% and 0.16 m2, indicating that the LIDAR
with the 1m depth resolution would need to have pixels with an area of 0.16 m2, or 0.4m (40cm)
on a side, if square.  As a point of comparison, the SBT data collected in South Australia and
mentioned above (packing density calculation) were collected with the ASTIL sensor having a
cross-track resolution of 9cm and an along-track resolution of 30cm, so that the equivalent Rxy
was 0.9*0.3 = 0.27m2, which is reasonably close to the theoretical value presented above32.

6.4 Calculation of expected LIDAR returns for tuna

In order to have a sense of what to expect from a given experiment, it is advantageous to
compute, in advance, the theoretical values for the data that are sought.  For a LIDAR
experiment, a parameter that related well to the observed image data is the SNR.  The SNR is a
ratio of the signal excess power to the background power, and has its foundations in RADAR
signal theory, but is equally useful in LIDAR signal treatments as well.

For the airborne LIDAR viewing fish in water, the signal excess is the LIDAR return from the
fish, and the background is the water volume backscatter from a volume set by the lateral
resolution and the limiting depth resolution associated with the laser pulsewidth.  The noise is
determined by the receiver photonics and electronics.  As a photocathode is involved early in the
receiver signal chain, the quantum efficiency of this element, scaled by the noise figure of the
receiver, sets the noise for the LIDAR, independent of the water environment.  The noise figure
of the receiver, in the case of the prototype streak tube, is driven by a microchannel plate (MCP)
that provides photoelectron gain within the streak tube.  The radiometric quantities and sensor
parameters needed to complete the calculations for SNR are tabulated in Table 6.

                                                
32 This is not to be taken as a claim that the theoretical model has been validated, per se, since there are many factors
unaccounted for here that would possibly move the results by 20 or 30 percent.  Rather, the value is in
demonstrating that it was for good reason that the SBT experiments led to the conclusion  that sensor resolution had
to be maximized in order for the prototype ASTIL sensor to lead to SBT observations.
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Table 6.  LIDAR parameters used in experimental SNR calculations

LIDAR Parameter Value
Laser energy per pulse 0.012 J
Laser pulsewidth 9 ns
Laser wavelength 532 nm
Streak tube quantum efficiency at 532 nm 10%
Streak tube MCP gain 1-1100
MCP noise figure 5
Receiver field of view 15 degrees
CCD format 256 x 256 (binned 4x4)
Receiver resolution/pixel 0.001 radians
Water volume backscatter coefficient 0.0007/m
Water total scattering coefficient 0.2/m
Water diffuse attenuation coefficient 0.08/m

Figure 31 shows the calculated SNR performance using the sensor parameters from Table 6 for
two cases: with and without in-water scattering, which induces spreading or blurring in the
image.  Also shown is the theoretical upper limit on measured SNR for the sensor.  This is
essentially a description of the dynamic range of the digitizer, which is a digital CCD camera.
The most obvious feature of the plot is the discrepancy between the SNR with scattering and the
SNR without scattering.

The term, spreading refers to the blur introduced by water molecules and particulates when
imaging through water, as is the case with the airborne LIDAR.  This blur, induced by photon
scattering, acts to reduce the contrast.   Since contrast, which describes the difference between
the target and the background, decreases as blur increases, the SNR will likewise drop off with
increasing blur.  As the amount of spreading incurred depends on the amount of water the light
has to travel through, loss of contrast increases as the depth increases.  These trends are borne
out in the model calculations shown in the figure.

The pre-experiment conclusion drawn from the SNR data as plotted above was that the GBFT
would have to be near the surface in order to detect them unambiguously and open ocean water
conditions would be required.  As will be shown, these conditions were met, making it possible
to obtain the GBFT data that has been alluded to.  Such calculations were also made for earlier
experiments, though the results were not as useful as for the GBFT, as the conditions needed for
success were not as fully met, and the problem was not as fully understood.  But this is
characteristic of any research endeavor, and if the problem were fully understood at the outset,
there would have been little motivation to pursue the experiments.

6.5 Experimental observations

The purpose of this section of the report is to show experimental results and make comments as
needed to help explain what is being shown. Thus, this section will begin with 2D and derived
1D imagery in order to acquaint the reader with ASTIL data for tuna and other species that were
observed.  3D and the associated 2D (projections) will also be shown, but only for the GBFT
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data that were gathered in the last experiment conducted as part of this effort.  This section will
conclude with some schooling statistics derived from this project, after making some
observations about the nature of tuna LIDAR signatures.

6.5.1 Observed images: 2D, 2D w/ 1D slices

Earlier in this report, images of akule were shown in order to illustrate the 3D nature of the
ASTIL sensor.  In this section of the report the reader will also see that the akule are
fundamentally different from tuna in terms of their LIDAR signature, owing mainly to their
packing density and reflectivity.  However, before presenting tuna data for direct comparison
with akule, LIDAR data for one additional type of animal will be shown.

This additional animal is dolphin33, imaged in Boston Bay, South Australia during the joint
experiments with CSIRO in 1997.  An unprocessed dolphin image is shown in Figure 32.  This
shows the obvious signature of the dolphin and its relatively smooth optical profile.  Since this
dolphin was imaged on three consecutive shots, it is known that this represents a mid-body
LIDAR signature of dolphin, and it is also known that the dolphin was approximately 2m in
length34.

When the dolphin image is processed to remove the exponential and range-squared trends, the
dolphin signature and its associated shadow are more obvious, as shown in Figure 33.  As the
discrete nature of the pixels is apparent, one can easily count the number of pixels across the
dolphin as being around 6 pixels. Using the fact that the cross-track resolution (again, the
horizontal axis as shown) was 8cm per pixel for this image, an apparent dolphin body width of
48cm can be derived.  If in-water spreading is accounted for, this number reduces to roughly
30cm (depending on the water type, which was not directly measured).  This is a reasonable
result for a mature dolphin.

The point of this discussion of the dolphin LIDAR signature is interesting in its own right, but
has a particular application to the purpose of this research, which is that of dolphin bycatch
reduction.  As there is a known association between dolphin and tuna in the ETP, and as LIDAR
may be useful in helping to reduce dolphin bycatch through more targeted fishing, it is important
to know that there are measurable differences between dolphin and tuna.  The differences that
will be seen here have to do with size and also reflectance properties, or LIDAR signature.  Such
differences can be used to help identify schools of tuna not associated with dolphin, or at least to
characterize the nature of the association more fully, so that risk of bycatch can potentially be
mitigated.

An example of some GBFT data for comparison with the dolphin data are provided in Figure 23
and Figure 24.  The corresponding processed images are shown in Figure 34 and Figure 35,
respectively.  An example of two different 1D profiles are provided in Figure 36 that show both
the overall context of the LIDAR return in Figure 34, in addition to a transect that highlights the
LIDAR return from the GBFT.   While there are not statistically significant observations of

                                                
33 The spotter was not certain as to the precise species.
34 The airspeed was 60m/s and the laser PRF was 100 Hz, meaning that images were spaced 0.6m apart.  Three
images implies at least 1.8m of travel.



41

dolphin with which to compare signatures of tuna, the initial reviews of the image and transect
data indicate that the reflectivity profile and the physical size could play a discrimination role in
comparing yellowfin and dolphin signatures.35

6.5.2 Observed images: 3D, 3D w/ 2D projections

One of the principal features of the ASTIL sensor is its ability to image submerged objects in
three dimensions. This section will present an example of 3D imaging that is specific to tuna.
Both GBFT and SBT data were reduced and prepared for 3D imaging, but the GBFT data are of
better quality for viewing via 3D rendering.

The data were prepared much the same way as for the akule school shown in Figure 21, except
that the akule school did not require a shape sensitive threshold for selecting multiple objects for
viewing within the volume.  The akule was a single entity that could be separated from its water
volume directly.  The tuna presented here required a detection process that separated individual
tuna from water in 2D images, which were then stacked to form a 3D volume that could be
rendered.

The 3D image of the GBFT school imaged in New England is shown in Figure 37.  There were
over 60 GBFT detected in this school when automatic detection algorithms were run.  If the 3D
image is projected up onto the water surface, a topographical map of the school can be seen, as
shown in Figure 38.  Other projections can be made, as needed for studying the school.  This
projection serves to illustrate the utility of the 3D data obtained with the ASTIL sensor.

6.5.3 LIDAR signature observations (shape, reflectivity)

From the data gathered on the GBFT, the LIDAR response to the GBFT, or its signature, can be
gleaned.  Since the ASTIL sensor is a 3D sensor, information on all three dimensions can be
reviewed.  This section presents some analysis of the signature data for the GBFT.  The purpose
is mainly to illustrate the use of the sensor data, but also serves to indicate some areas where care
must be exercised in handling LIDAR data.

Figure 39 shows an average range profile for GBFT.  The full-width at half-maximum (fwhm) of
the laser pulse, as represented by the range profile, is slightly more than 1m.  The average is
formed by collecting 1D range-slices of GBFT signatures by extracting a fixed number of pixels
either side of the peak value location that is provided from the matched filtered image.  The
matched filtered image peak location represents a signal maximum location that is akin to a
centroid.  So it may have some skew or offset with respect to the peak signal for a particular 1D
transect through the signature (e.g., range).  This graph is essentially a replication of the laser
pulse profile, akin to the LIDAR return signal from a diffuse surface.

The profile shown in the above mentioned figure was formed by averaging vectors after aligning
them by the location of the matched filter peak pixel, which is dependent upon the 2D response
of the LIDAR to the GBFT.  If the profiles are first aligned by the raw-data peak-value and then

                                                
35 This issue will be addressed in more detail, if possible, in a subsequent technical publication.
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averaged, the result changes.  This change is most pronounced in the range direction, as shown in
Figure 40.  Here both the matched-filter (MF) aligned and raw-aligned averages are shown.
The same exercise is repeated for the cross-track and along-track directions in Figure 41 and
Figure 42, respectively.  In these images, as with Figure 40, there is a marked increase in the
measured contrast for the GBFT when the average profiles are aligned by the maximum in the
raw image data.  Part of this is due to the fact that any asymmetric object will likely have
maxima along individual axes that are not identically equal to the global maximum representing
an integrated response over many dimensions. It is possible that such a distinction is adequate to
explain all of the difference observed in each of the three plots.

Figure 41 shows the average cross-track profile for the GBFT.  The apparent width of the tuna
(fwhm36) is approximately 0.5m.  This is not the same as the physical width of the tuna, as the in-
water spreading is not accounted for and the orientation of the tuna is neither uniform nor known
with certainty for this experiment.  Thus, for present purposes, it can only be said that the
apparent cross-track signature has been measured. Likewise, the along-track profile is shown in
Figure 42.  The fwhm along-track profile measures 0.6m, which is only slightly more than the
cross-track profile.

Though the along-track and cross-track profiles remain ambiguous as to the true orientation of
each tuna, the values measured are consistent with expected results.  The GBFT are on the order
of 30cm physically in width, and 5m of water can readily introduce several centimeters of
apparent width. Thus, when combined with the likelihood that both the along-track and cross-
track measurements contain parallel, perpendicular and diagonal transects of tuna bodies that are
2m in length, the 50cm average is reasonable.

The issue of whether or not the pronounced peak (for raw peak aligned data) in these graphs is
merely an artifact of handling noisy data can be explored some using computed images.  If we
first form an image of a symmetric 2D signature using a Gaussian, and then add noise to it, we
can approximate the LIDAR signature to a symmetric target with a Gaussian laser pulse.  If an
ensemble of these is generated using a variable noise field, then the signature selection process
that led to the prior three figures can be emulated and examined in a more controlled fashion.

Figure 43 and Figure 44 show examples of this type of calculation for target SNRs of 9 and 36,
respectively.  In Figure 43 the effect is very close to that shown in the Figure 40, and the SNR of
9 used is comparable to the signatures of the more visible GBFT. Figure 44 shows what happens
when the SNR is much higher; the effect of averaging 1D transects diminishes when the noise
decreases.  The noisiness of the data can be easily seen in the 2D images that are shown inside
the plot region for these figures.

Thus, it would indeed appear that aligning noisy data according to peak value will tend to
enhance the peak by (artificially) adding coherence to the resultant data.  However, there are still
many issues that remain uncertain that are tied to the LIDAR signature of the tuna, and more data
are needed to obtain reliable answers.  For instance, the apparent high reflectivity of tuna when
viewed from beneath the surface of the water (while illuminating from the surface via sunlight)
remains a puzzle when the low reflectivity of the tuna is measured with the LIDAR.  Also, the
                                                
36 Full Width at Half Maximum
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suspicion formed by the authors that the tuna may have specular reflectivity properties that
enhance viewing off-axis from the light source but diminish the direct backscatter (as for a
LIDAR) term, remains unaddressed by this research.

So there are many open issues regarding the tuna LIDAR signature.  This section has shown
some of the utility of the ASTIL data to address these issues, and has shown some specific tuna
observations to illustrate the progress that has begun to be made in this research.

In addition to graphical studies of the LIDAR signature as shown above, the LIDAR data can be
used to derive observed fish contrasts, which can be used to estimate reflectivity if the water
optical properties are known or can be estimated.  An example of such a contrast analysis is
shown in Figure 45.  Here it is seen that the contrast is variable, but not depth dependent.  This is
reassuring, since the contrast should not change with depth if the school contains the same type
of fish throughout.

6.5.4 GBFT schooling statistics (distribution, density)

The data shown in this report contain information about the tuna within a school that can be used
to calculate in situ packing densities and distributions.  They can also be used to graphically
study the imaged fish school.  This section will illustrate this by showing the statistics measured
for the GBFT school37.

Several graphs follow (Figure 45, Figure 46, Figure 47, Figure 48, Figure 49, Figure 50).  These
will simply serve as illustrations of the use of the ASTIL sensor to study fish schools.  Each
graph is described by a caption that is adequate to describe the information presented.

6.6 Measured detection performance

6.6.1 Introduction to detection (target vs background, filtering)

The performance of greatest concern in this effort is the ability to detect fish schools.  Clearly,
from the prior discussion on resolution, in order to detect schools of tuna one must first be able
to detect the individual tuna within a school unless packing densities turn out to be much greater
than is currently assumed.  Thus, the problem of fish school detection is really an issue of
detecting individual tuna.

An objective in nearly any sensor-related detection problem is to isolate the target of interest
(tuna) from anything else that might be observed with the sensor that is known to be other than
the target (water, noise, debris, etc.).  A robust and time-honored approach to separating targets
from non-targets, or more generally, in separating signal from noise, is that of filtering.

The filtering approach posits that there exists a mathematical operation (filter) which, when
applied to the an image collected with a sensor, will yield an image with more visible targets and
less visible noise or background.  A test metric that allows for such an evaluation of “more
visible” in an image is the SNR.  A well-known filter that optimizes an image for SNR is the
                                                
37 The statistics are derived from the so-called ground truth data set used in the detection analysis.
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matched filter38.  The matched filter will robustly deliver filtered outputs that have optimal SNR
when the filter matches the image of the target of interest, and when the input image has a noise
field that has zero mean and Gaussian statistics.  When a matched filter is generated and targets
are present, one need only apply a threshold to the filter image data and detect peaks, the highest
of which will be targets.

Typically, one cannot obtain images with means that are identically zero or having statistics that
are purely Gaussian.  The usual approach is to prepare the images (pre-process) to enforce the
zero-mean, Gaussian assumptions, and then proceed with matched filter processing.  Such was
the approach taken in this research.  The exponential decay introduced by the water, the range-
squared dependence inherent to LIDAR data, and the electronic and environmental artifacts
introduced into the data all must be handled correctly and in the correct order in order to arrive at
a matched filter image that is useful for detection.

The general approach taken in processing imagery for this research were as follows:

1. Use information on altitude and streak tube settings (sweep timing) to remove the range-
squared dependence from the images collected.

2. Estimate the exponential decay for the ensemble of images that contain the particular
images having targets.

3. Remove the exponential decay from the image ensemble.
4. Normalize the variance so that the variance for the image is a scalar.
5. Apply the matched filter by convolving the pre-processed image(s) with a filter that

matches the shape of the target (tuna).

Once these image processing steps have been performed, the detection of targets can begin.
Target detection is a simple matter of 1) applying a threshold (SNR, in this case) to the matched
filtered imaged data, and 2) recording the position of targets that are higher than the threshold.
Obviously, once the position of a target is known, other items associated with the target can be
deduced. However, the declaration of a target at a specific point in an image is the “bottom line”
for the detection problem.

6.6.2 Formation of “ground truth”

In any airborne remote sensing experiment it is important to have some reference points or
known targets on the ground that can be included in the data analysis for experimental control.
For instance, when the ASTIL sensor is being evaluated for terrestrial mapping applications,
there are carefully surveyed ground control points that serve as “ground truth” data against which
the outputs of the mapping algorithm can be compared, resulting in a measure of accuracy for the
map data.

Unfortunately, it is not possible to provide such “ground truth” for an airborne experiment that
seeks to image schools of fish in the open ocean.  It is possible to identify that “a school of
GBFT is present” with input from a spotter and the expertise of marine scientists participating in
the experiment, but it isn’t possible to provide positional data on size or depth to aid in
                                                
38 Merrill Skolnick, “Introduction to Radar Systems”, 2nd Edition, McGraw-Hill, 1982.
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evaluating the outputs of a detection algorithm.  The approach to this dilemma for this effort was
to use known sensor and environmental physics and an experienced team of analysts to manually
identify individual fish signatures for those instances when it was known that a school of known
species had been traversed.

Thus, one of the principal tasks of data analysis was to carefully review images and sections of
images in order to find and tabulate instances of fish from the ASTIL sensor data.  These were
then used to process images automatically in order optimize the detection algorithm used to find
tuna and to generate statistically significant matched filter background/noise data. These
background data formed the basis for the analysis of detection that followed.  The processes used
and the results arrived at are delineated in the next section of this report.

6.6.3 Formation/calculation of detection statistics

The purpose of this section is to show the mathematical approach taken for the detection
problem. This section is not intended to provide an exhaustive discussion on the detection
problem as it relates to tuna.  Rather, it’s intended to provide a sense of the general approach
taken in implementing a solution, as there are many approaches that could have been taken.
Thus, the process is reiterated, the equations used are described symbolically, and then some
comments are made regarding the specific implementation of the detection scheme.

The process used to detect tuna followed the same approach as delineated earlier in this section.
First the range-dependence of the data and the exponential decay caused by the water and its
constituents were removed.  Then the surface was detected and removed from consideration.
Next, the sequence of 2D images containing the school was stacked to form a 3D data set.  This
3D data set, or image, was then matched filtered for the 3D tuna signature.

For this research, the matched filter was implemented in the frequency domain, as this has
computational advantages over equivalent spatial domain processing (i.e., convolutions).  In
order to jointly localize and detect the tuna, both a matched filter and its derivative were used.
Thus, once a threshold had been applied to the matched filtered image, the zero-crossing of the
derivative-filtered image was used to identify the location of the maximum.

6.6.4 Equations used to implement 3D matched filtering:

Gaussian Filter Equation:
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Gaussian Derivative Filter Equations:
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=coordinatefwhm  full width of the average fish along the direction of a coordinate (x,y, or z), which is the
half width at half maximum of the Gaussian filter

=coordinatef  spatial frequency corresponding to a coordinate (x,y, or z)

=coordinateN  Number of points used in the FFT along the direction of a coordinate (x,y, z)

1−=i

{} =⋅ℑ  Complex Three-Dimensional Fourier Transform

{} =⋅ℑ −1  Complex Inverse-Three Dimensional Fourier Transform

6.6.5 Comments on the implementation

The local peaks in the Gaussian filter output are determined by the points for which the outputs
of the Gaussian derivative filter all cross zero from positive to negative along increasing x, y, and
z directions, respectively.  The filtering (convolution) is performed using a complex Three-
Dimensional Fast Fourier Transform and a complex Three-Dimensional Inverse Fast Fourier
Transform.  Several filter widths smaller and larger than the value listed above were tried on the
New England data set, and this choice of filter width seemed to give the best results in terms of
minimizing false alarms while maximizing correct detections.

6.6.6 Generation of target and background probability density functions

Signal-plus-noise data points are the maximum filter outputs in a "fish sized" region around each
of the fish signature points detected manually for which the contrast of a pixel is greater than
0.33, divided by the standard deviation of the filter outputs for all points in the data set.  Noise
data points are the filter outputs for each data point in two sub-regions of the data set where there
were no fish detected manually, divided by the standard deviation of the filter outputs for all
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points in the data set.  The histogram and cumulative distribution data were generated and plotted
in Figure 51.  There were 104 signal-plus-noise data points and 451,009 noise data points.  The
signal-plus-noise mean was 7.709 and the standard deviation was 2.722.  The noise only mean
was -.069 and the standard deviation was 0.819.

6.6.7 Generation of a receiver operating curve

Based on the detection statistics discussed earlier, the tradeoff between the probabilities of
detection and false alarm can be characterized graphically for the GBFT.  The graphical
portrayal of this tradeoff is known as a ROC.  Using knowledge of where the tuna are and where
they are not, one can adjust the SNR threshold upward from zero and downward from the
maximum SNR achieve and simply record the number of detections corresponding to tuna and
the number of detections that are not tuna.  Then, treating the ground truth information on the
school as representing all the possible tuna in that school (the universe for the calculation),
percentages and probabilities can be formed from detection data just gathered.

Two ROC examples are shown in Figure 52 and Figure 53.  These are actually the same data, but
plotted on linear and logarithmic scales, respectively.  The vertical axis in both curves is the
probability of detection and the horizontal axis is the probability of false alarm.  The linear curve
is shown for a point of comparison, as such data are sometimes shown in this format.  However,
the easiest format for studying is the logarithmic plot, as the detail is more pronounced.

In Figure 53, for instance, if it was desired to achieve a false alarm rate of one in 10,000 tuna-
like objects, a probability of detection of 80% could be achieved.  Likewise, if one false alarm in
100,000 were required, the probability of detection would drop to 70%, and so on.  Given the
early nature of this research, such numbers are encouraging.  However, one must not be deceived
by the seeming improbability of encountering a false alarm.

First, the use of the term, tuna-like, is intentional.  The noise statistics of the LIDAR and the
clutter introduced by the environment will conspire to produce events that, from time to time,
will look like tuna to the LIDAR.  As will be discussed later, there are improvements that can be
made in the prototype ASTIL sensor to help mitigate this problem. However, it will always be an
issue of greater or lesser concern, depending on the fish and sensor parameters.

Second, the amount of time required to produce 10,000 or 100,000 events for the LIDAR to
consider is made smaller by the high resolution and high data rate for the ASTIL sensor.  The
highest PRF tested with the ASTIL sensor39 has been 100 Hz.  At this rate, and given a 256x256
image format, the ASTIL sensor generates 6,553,600 pixel events every second.  Not every pixel
counts as a candidate fish event (multiple pixels were generated for each GBFT, for instance)
and noise events don’t naturally form tuna-like data.  However, the rate of data collection must
always be considered when reviewing numerical rates of false alarm.

                                                
39 PRFs of 200 and 400Hz have been successfully tested on the more advanced sensor being developed for the ONR;
this technology will eventually be available for airborne tests.
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The data presented in the next section will apply these concepts to the GBFT data and show that,
while the ROC implications are indeed encouraging, there are improvements that can and should
be made in order to detect schools of tuna.

6.6.8 Application of the ROC to the GBFT data

Having generated the ROC performance data and the data set containing GBFT and non-GBFT
events, the ROC was applied to the data by setting a detection threshold and then detecting tuna-
like objects.  These objects were then localized and plotted.

Figure 54 shows a plot of both the ground truth (analyst detections) and automatically detected
tuna using nearly optimal40 threshold settings for SNR.  Here it can be seen that both detections
and false alarms were registered.  However, there are few false alarms outside the nominal
school region, indicating that a school has been successfully detected. Figure 55 shows the
results for the automatic detection only.  Here it is quite clear that a school has been detected.  It
is in this sense that the authors find this result very encouraging:  even with the shortcomings of
the prototype ASTIL sensor, this result demonstrates that schools of tuna can be detected with
airborne LIDAR.

6.6.9 Comments on the processing

Automatically detected tuna are defined as those peaks of the output of the matched filter for
which the output value is above a user determined threshold and for which the contrast from the
original data is greater than a user determined threshold.  For the New England data set, the filter
output threshold is 0.097 and the contrast threshold is 0.33.

The plotted values for detected tuna are the SNRs for the peaks remaining after thresholding.
The SNRs are the thresholded filter outputs divided by the standard deviation of all filter outputs.
The standard deviation of all filter outputs for the New England data set is 0.021.  Therefore, the
SNR threshold used in processing the New England data set to produce the graphs shown is 4.62
(0.097/0.021).

6.7 Performance summary of the prototype ASTIL for GBFT

This analysis has demonstrated the basic feasibility of detecting schools of GBFT with the
prototype ASTIL sensor.  While it has not been tested over diverse enough conditions to have
confidence in near-term operational use, the data presented here indicate that even the prototype
ASTIL sensor has significant utility in furthering our understanding of the tuna detection
problem for GBFT, and may well provide a usable stock assessment data product, given some
time for optimization.

                                                
40 For this analysis, the analyst set a threshold that provided graphical results that were optimal – it was obvious that
a school had been detected and only a few false detections occurred.
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6.8 Discussion of performance requirements for yellowfin tuna detection

This section of the report will describe the performance requirements as implied by the
experimental observations to date.  The emphasis will be upon the performance requirements for
conducting additional scientific experiments, as opposed to the performance required for
operational survey scenarios.  Some comments will be directed toward operational scenarios, and
these will also be considered more in the discussion of projected performance.  However, given
the early state of this research, the present emphasis will be upon scientific objectives and on
existing sensor technology.

6.8.1 Cross-track resolution requirements based on experimental results

The purpose this section is to use the GBFT results to estimate the resolution requirements for a
similar experiment conducted in the ETP for yellowfin tuna.  The purpose is not to articulate a
design; rather it’s to indicate the type of system that should have been attempted, had we had the
benefit of knowing the outcome of the GBFT experiment in advance.

The performance measured for the GBFT was obtained with 0.001 radians angular resolution
cross-track and approximately 30cm along-track41, yielding a 20x30cm pixel size at the water
surface from 200m altitude.  For the GBFT, this resolution was demonstrably adequate for
detecting schools.  The measured LIDAR signature was 50cm; thus, 2.5 pixels per apparent
target cross-track dimension yielded the GBFT data shown in this report.  If the physical size of
the fish is assumed to be 30cm, then the experimentally-based requirement becomes 1.5 pixels
per target cross-track dimension.  Conservatively, the experimentally-derived cross-track
resolution requirement should be 2-2.5 pixels across the smallest tuna dimension to be imaged;
this dimension is assumed to be the mid-body width (the head or fin sections would drive the
design in the right direction, but would likely over-specify the design).  The purpose of having
multiple pixels per cross-track dimension is for the validation of fish signatures during data
analysis.  One of the features that distinguishes fish from photon noise in the imagery is the fact
that photon noise tends to be a single pixel event, whereas a fish signature has multiple pixels
(provided such resolution is designed into the system).  This is a requirement that would not
necessarily remain for a mature, operational system, but is vital for a prototype, investigative
system.

For the ASTIL sensor, the along track resolution is also important, but is less variable than the
cross-track resolution, as it is set by the transmitter optics and the laser beam divergence.  For
instance, the cross-track resolution can be varied by adjusting the amount of binning done on and
off the CCD integrated circuit, but has its lower limit set by the CCD pixel size and the laser PRF
that ultimately sets the imaging data rate.  The ASTIL work conducted to date has set the along-
track resolution at 0.0015 radians typically, thus coming close to the minimum ASTIL cross-
track resolution used to date.

Assuming that the resolution obtained for the GBFT can be scaled to successfully detect other
smaller tuna such as the ETP yellowfin, the resolution required to detect schools of yellowfin can
                                                
41 The along-track resolution here is the optical resolution driven by the along-track size of the laser beam; the
along-track sampling was 60cm, for 60m/s velocity and 100 Hz PRF.
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be calculated directly.  For the purposes of this estimate, a physical fish size of 15 cm mid-body
width will be used. This corresponds roughly to a 100 cm body length42.

Given the 15 cm mid-body width, and assuming that at 5m in ETP water (JWT-IB43 at worst) the
spreading is 30cm, the signature at 5m depth would have a Gaussian full width of 33cm.  This
follows from the convolution of two Gaussians, in which the resultant Gaussian will have a
width that is the square root of the summed squares of the kernel and data Gaussian widths.
Using the GBFT data, a spreading estimate in the JWT-II waters near Cape Code back-calculates
to 40cm.  If this is used as a reference point for setting the mean scattering angle in those waters,
spreading calculations can be made for other waters.  Such calculations are shown graphically in
Figure 56.  These spreading estimates are derived from Lutomirski44.

For the ETP tuna problem, at 2.5 pixels per width, the required resolution is then 33/2.5  = 13cm,
for imaging a 20kg yellowfin at 5m depth.  Clearly, from Figure 56, a 13cm pixel size would
yield more than enough resolution at depths beyond 5m, using the 2.5 pixel rule of thumb
suggested above.

Thus, continuing with the exercise of scaling the GBFT work to the tuna detection problem in
the ETP, if the flight altitude were again 200m, the 13cm resolution would require a cross-track
angular resolution of 0.00065.  This is nearly twice that of the prototype ASTIL sensor, but a
resolution of which the ASTIL technology is capable, if system modifications are made.  As the
inherent resolution of the sensor CCD is 0.00025 radians cross-track, this is within reach, and
requires software adjustments and laser PRF adjustments.

6.8.2 SNR needed for detection of fish and fish schools

The SNRs calculated for the GBFT are arguably adequate for detecting schools, assuming that
the data collected (for instance, Figure 55) are representative of the general nature of the
problem.  This is an issue that can only be fully addressed through further experimentation in
which data are collected on a large number of schools.  However, given the assumptions about
the similarity of the GBFT problem to other tuna species, if the resolution is increased in keeping
with the estimated required resolution from above, the required SNR may be obtained for
yellowfin tuna school detection.

The main caveat to this argument is the requirement that the clutter not change with the change
in sensor resolution, and that the assumptions about the optical similarity between the GBFT and
the yellowfin hold true. As has been argued already, these are not unreasonable assumptions.
However, the paucity of data on the yellowfin precludes high confidence in the comparison.

                                                
42 These numbers are from physical SBT measurements made during the CSIRO experiment, and are also close to
the numbers used by other researchers, Churnside et. al, for instance, in NOAA Technical Memorandum ERL ETL-
287.
43 JWT is the Jerlov Water Type; these have been studied and tabulated for all the world’s major bodies of water.
For JWT-IB water, the total scattering coefficient is 0.077/m.
44 Richard F. Lutomirski, et. al, “Moments of Multiple Scattering”, Applied Optics, Vol. 34, No. 30, 20 October
1995, pp. 7125-7136.
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6.8.3 Required laser energy

The remaining caveat to the argument that the GBFT results can be extended to the yellowfin
pertains to the laser energy.  Continuing with the prior argument, if the resolution is increased
and the same SNR is required, additional photons per pixel will be required.  For a doubling of
resolution, a doubling of the laser energy is required.  There are systems available that provide
this, and there is an ASTIL configuration that can provide it presently.

However, the general rule of thumb for existing laser systems is that, without significantly
increasing the cost, the PRF must decrease as the laser energy increases per pulse.  This means
that along-track sampling resolution must be degraded if the laser energy is increased, without
adding system cost or allowing time for emerging technologies to mature and find markets45.

6.8.4 Laser PRF (along-track resolution) requirements

There are two general classes of problems to consider where laser PRF is concerned.  One is the
problem of direct concern to this research: school detection.  The other class of problem is that
which was of greater interest to the CSIRO experiment: population dynamics.

The detection of schools of tuna does not require the detection of every tuna in a school.
Another way to state this is to observe that discerning the presence of a school depends more on
observing that a high number of tuna are detected per unit volume, rather than observing
precisely how many tuna are in a given region.  The latter datum will provide the former, to be
sure, but only the former is needed if one is only concerned with the presence or absence of a
school.

Consequently, while adequate sampling (high resolution) per image is still required in order to
detect tuna within an image, one can under-sample the school in terms of the number of images
gathered per school without losing the ability to detect that school.  For example, in Figure 57,
which shows the number of tuna detected per (laser) shot for the GBFT school rendered in
Figure 37, not every shot is required to observe that a school is probably present.

To illustrate what would happen if a lower PRF were used, the GBFT data in Figure 57 were
plotted along with data extracted from the original (100 Hz) data and resampled at ½ and ¼ the
PRF, or 50 and 25 Hz, respectively.  These resampled data are plotted alongside the 100 Hz data
in Figure 58.  Note that the data have been placed in a larger vector to provide context indicative
of what a real school detection event might look like.

Figure 59 shows a smoothed version of Figure 58, where a boxcar average of adjacent shots is
used to provide a better visual sense of the presence of a single school of fish.  In this case it is
perhaps easier to see how such data might be used in a deployed system to integrate a fish
density statistic akin to the area under the curves just plotted, and declare a school if the density
statistic passed a predetermined threshold.

                                                
45 Current diode-pumped solid state laser systems can deliver both the PRF and energy needed for this problem.
Market trends in laser utilization will bring these systems into line with existing flashlamp systems, but they have
yet to merge, as the diode-pumped systems are still quite new.
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6.9 Performance projections

6.9.1 Comparison of existing model with observations

Figure 31 showed an example of an SNR calculation akin to those performed prior to the GBFT
experiments.  The calculations presented there provided some indication of the sensor
performance and environmental conditions required in order to successfully obtain LIDAR
images of GBFT.

If the same calculations are made, but with the addition of measured performance and improved
target information, a comparison can be made between the theoretical SNR model and the actual
ASTIL performance.  Figure 60 shows a plot of SNR versus GBFT depth for the waters near
Cape Cod (JWT-II water, with b=0.2/m).  As before both the scattered and unscattered cases are
shown, in order to provide a visual measure of the effect of scattering upon SNR.  The measured
SNR for GBFT are also plotted as a single data point with an error bar representing the standard
deviation of the SNR about the median.  The median and standard deviation for the measured
SNR were 7.7 and 2.7, respectively, for a median GBFT depth of 3.4m.

The model calculations shown in Figure 60 show good agreement with the measured data.
However, this should not be mistaken for a statement that the model can be relied upon to predict
GBFT SNRs as closely as shown in the plot.  Some of the closeness is due simply to
circumstance; part of the closeness is caused by the use of a measured contrast, instead of a
derived reflectivity.  The contrast used for the model calculations was 4.4, the median contrast
measured for the GBFT.

Figure 61 shows a theoretical SNR plot for which a derived reflectivity of 1.5% is used, and the
environmental parameters presumed typical for the anticipated waters of Cape Cod are used.
The difference between using a measured contrast and deriving one from the reflectivity and
environmental parameters lies in the number of assumptions that one has to make.  In order to
derive a contrast from a reflectivity, the water volume backscatter coefficient and specific
bidirectional reflectivity properties of the tuna must be well known.  As the tuna are not well
enough characterized to know this and the environmental parameters were not measured in situ
for these experiments, these parameters must be assumed. Figure 61 is not greatly in error with
respect to the measurements, but it was generated with assumed fish and environmental
parameters, leading to an error larger than when using a data-derived parameter that circumvents
such speculation.

6.9.2 Extension of the existing model to deployable sensor configuration

If the sensor model used to predict the (single) GBFT SNR is modified to reflect a more
operational tuna school detection system, some understanding of the utility of the ASTIL sensor
to the bycatch reduction problem can be gained.  The changes to the prototype ASTIL sensor that
are needed have been implied in the preceding sections:  1) increased resolution, 2) increased
laser energy, 3) larger swath, and 4) real-time tuna detection and school statistics accumulation.
The first two improvements are self-explanatory.  The last two improvements have not been
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discussed in detail, so a few comments will be made here prior to recalculating the system
performance for a more operational ASTIL sensor.

The need for a larger swath is driven by the need for efficient aircraft operations and area
coverage rates that do not induce excessive cost (by having to fly many hours per square area
surveyed).  The prototype ASTIL sensor has a 15 degree swath.  For a single-sensor system, a 30
degree swath is near the maximum obtainable without losing light to vignetting in the receiver
collection optics or decreasing the size of the entrance aperture, which reduces light collection
efficiency.  As will be explained later, the 15 degree swath made for difficult survey operations,
especially at altitudes above 100 meters. So increasing the swath towards the practical maximum
of 30 degrees helps both the area coverage performance and the experimental logistics.

Since an operational system for bycatch reduction will be primarily a school-detection system,
and since it will be impractical to involve an analyst in the review of every image collected,
some automatic processing of data will be needed during operations in order to help locate and
size the schools of tuna.  Thus, a measure of real-time detection of tuna will be needed.  The
implication upon a system design is that this requires some minimum amount of SNR per tuna.
A good design point to start with is the SNR achieved for the GBFT (median = 7.7), as this
appears to allow for real-time detection with the prototype ASTIL sensor, providing a proven
baseline to work from.  The analysis in this report will begin with single-tuna detection statistics,
as these form the basis for any school detection approach that does not treat the school as a
lumped aggregate.  Once the single-tuna statistics have been presented, possible aggregate
approaches will be examined for operational system use.

6.9.3 Single-tuna detection statistics

Using the observed GBFT data as a point of departure, two ASTIL scenarios will be examined.
First, the existing prototype ASTIL system will be applied to the ETP yellowfin problem, but
with those modifications that can be readily made to the existing system (i.e., without major
system redesign and subsequent development), and constrained by requiring scientific-grade
data.  Second, the ASTIL system will be applied to the ETP yellowfin problem, but after
optimizing system electro-optics for currently available components, and with the constraint that
the system be deployed primarily for operational survey, as opposed to scientific investigation.
This constraint will allow the design parameters to be pushed a bit further toward optimal
detection, but at the expense of losing some of the analytical value of the resultant data, as
concerns LIDAR tuna signatures.

Figure 62, Figure 63, and Figure 64 show three ASTIL performance scenarios for studying
yellowfin tuna in the ETP.  All three figures assume a 100cm yellowfin in JWT-IB waters, using
the existing ASTIL electro-optics and data collection system.  The main difference is that these
plots assume that the ASTIL firmware has been modified to allow for higher resolution (1024
cross-track pixels instead of 256) and that a higher energy laser has been used (130 mJ instead of
10 mJ).  The change in water type from JWT-II increases the contrast to 6.4 from 4.446, and the
order of magnitude increase in laser energy per shot enables higher resolution without sacrificing
                                                
46 Based on Oishi-derived estimates of water volume backscatter coefficients.  See also, Marine Light Field
Statistics, R. Walker, John Wiley and Sons, 1994 (Table 5-4.4).
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the energy density per fish (relative to the prototype ASTIL configuration used for most of the
tuna data shown in this report).  The solid line at SNR=7.7 in each figure represents the mean
GBFT SNR observed in this research, and thus serves as a point of comparison.

Figure 62 shows that SNR values comparable to the mean GBFT results can be obtained down to
6-7m below the surface when flying at 500m altitude.   Unit SNR occurs at 10m water depth.
This SNR value is the point at which fish are indistinguishable from noise, taken one fish at a
time47.  These SNR values indicate that this configuration and altitude would be acceptable for
examining surface schooling behavior as occurs during feeding events.

Figure 63 indicates that SNR values comparable to the mean GBFT results can be obtained down
to 15m below the surface when flying at 200m altitude.  This performance begins to provide data
that are useful for night time operations48, and would certainly allow for daytime observations of
spotted schools.

Figure 64 indicates that SNR values comparable to the mean GBFT results can be obtained
below 20m when flying at 100m altitude.  This would definitely provide good performance
during night time operations and would also be useful for daytime, spotted schools, probably
even allowing for some “spooking” behavior in the school, as the dive velocity of the tuna would
quite likely be overcome by the aircraft velocity in many instances.

These figures indicate that, even with some modifications this enhanced prototype ASTIL
configuration would not necessarily provide an operational capability for both day and night
operations.  However, it would allow for robust night time operations at 200m altitude, and
would at combinations of 100m and 200m altitudes would allow for useful daytime data to be
collected, under the right schooling conditions.

Figure 65, Figure 66, and Figure 67 show estimated detection performance for an ASTIL sensor
upgraded using current off the shelf technology.  The improvements are:  200 mm f/1 front
aperture, 25 degree field of view (swath = altitude), upgraded CCD camera (40+ percent
quantum efficiency), and upgraded streak tube electronics (current Areté in-house design).
Generally, there are significant improvements at 200m, and the value of the improvements drop
off with altitude, as at 500m the tuna becomes under-resolved using the wider field of view.

The 200m altitude performance is arguably acceptable for night time survey operation, since the
tuna will often be in the top 20m of water (again relying on existing published data on this
subject).  The 500m and 1000m altitudes are still useful, and may allow for some fisheries
statistics to be gathered during both day and night operations.

What is clear from the SNR plots for single-tuna detection is that the anticipated maximum
depths for tuna49 (50m) cannot be imaged, and do not allow for direct detection for measuring
school size or determining its presence.  However, if the top 20m of water can be used to detect

                                                
47 Aggregate fish detection scenarios are discussed briefly in the next section.
48 Study of tuna behavior by the use of sonic tags, Newsletter Enyo (Far Seas) Fisheries Research Laboratory,
Shimizu 44:1-5 (this source from Hunter and Churnside, NOAA Report LJ-95-02).
49 Ibid.
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and study schools of tuna, then there is significant applicability for the ASTIL system, even
when limited by single-tuna detection.  Detection of tuna at the deepest anticipated depths, while
not allowing for imaging of individual tuna, may still be feasible if aggregate detection statistics
are used to determine the presence of a school.

6.9.4 Aggregate tuna school detection statistics

An issue left open in the analysis of single-tuna statistics is that of 1) how one might leverage the
single-detection statistics to generated composite school statistics and 2) how one could use other
sensor-derived data to indicate the presence of a school.  The first issue has been addressed
conceptually, as it was shown that a plausible detection scenario could be demonstrated using the
GBFT single tuna detection data.  However, estimates of depth-dependent performance were not
made for the case where multiple detections are used to accumulate detection statistics over a
region, as opposed to detecting individual tuna.  The second issue has not been directly
addressed in this research, though some observations have been made that indicate it’s a topic
worth looking at briefly.

6.9.4.1 Aggregate tuna school direct detection performance

Using the system performance model for the updated ASTIL sensor discussed in Section 6.9.2,
the single tuna detection performance can be used to estimate the detection performance when
the detection event is an ensemble of detections, as opposed to a single detection event.  The
simplest way to extend the single tuna results is to assume that multiple detections can be
combined independently and optimally so that the SNR will increase as the square root of the
number of individual detections used to form an aggregate detection statistic.

Figure 68 and Figure 69 show such an estimate of SNR performance for the case where an
updated ASTIL sensor is used to detect and optimally combine multiple instances of fish
detections from one image (corresponding to one laser pulse).  The packing density used for
these calculations, expressed in body lengths between fish within the school, is one body length
(BL).  This unit BL packing density converts readily to a unit packing density for the number of
fish per unit volume, if the relation V = N (cL)3 is used50 in conjunction with the 20kg, 100cm
yellowfin tuna that has been assumed for the calculations presented in this report.  Table 7 shows
several body lengths and corresponding packing densities calculated using this same formulation.
Figure 70 and Figure 71 repeat these calculations and illustrate how the performance changes as
a function of body length.

Table 7.  Packing density vs. body length for 20kg, 100cm yellowfin tuna

Packing Density (fish/m3) Body Lengths (spacing between tuna)
1.0 1
0.04 3
0.001 10

                                                
50 Model Estimates of Acoustic Scattering from Schools of Large Yellowfin Tuna, Redwood Nero, Naval Research
Laboratory Report NRL/MR/7174—95-7708, 1996.
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Figure 68 and Figure 69 indicate clearly that detection performance can be improved by
combining multiple detections, but care must be exercised in interpreting this result.  As it is
assumed that single detection have been combined to yield the aggregate performance, it is
necessary that the single detection event have enough SNR to distinguish it from the background.
Consequently, the data shown in Figure 68 must be compared to the data in Figure 65, where it
can be seen that single tuna detection at 200m altitude and 20m water depth yields an SNR of
only 4, which is probably adequate, but only marginally so.  Likewise, the aggregate
performance for 500m altitude suggests performance down to 20m, whereas the single shot
performance becomes marginal at less than 10m water depth.

The conclusion that one can readily draw is that detection of schools is improved by combining
the detections of individual tuna; however, not all of the available signal processing gain is
realized in this approach:  only those events that exceed a threshold will be considered.  In order
to recover this lost gain, one must use the detection events that are below the threshold (i.e., less
than SNR=4, to use the numbers cited above).

One method of using these sub-threshold events is to use a detection statistic that includes all
detection events, such as the mean SNR and its associated SNR variance.  For instance, the
GBFT data presented earlier had an SNR mean and variance of 7.7 and 2.7, whereas the
background data had an SNR mean and variance of –0.07 and 0.8, respectively.  So a school
detection approach that used such statistics would involve measuring and tracking the statistical
properties of the SNR detections as a function of time, and would declare a school detection
when the mean SNR shifted appreciably from the background level.  In this way, a greater
percentage of the signal processing gain offered by aggregate detection could be recovered and
used.

6.9.4.2 School detection based on apparent water optical properties

One measurement of the presence of a school that can be used to detect with is the measured
diffuse attenuation coefficient.  This approach treats the school as an additional scatterer in the
water that degrades the light penetration, and can therefore be observed in the (indirect)
measurement of attenuation.  Such a range-return slope detector was tried successfully during the
analysis of SBT data collected and has been considered by other researchers51.

Figure 72 shows the ASTIL-derived in-water attenuation coefficient data52 for two captive
schools of SBT and some open water between the schools.  While this graph does not represent
proof of the efficacy of this technique for detecting schools, but it does suggest feasibility.  Table
8 shows the change in the observed attenuation coefficient statistics when comparing the school
data to the open water data.  The shift in attenuation coefficient was about 0.07, or 17%; the

                                                
51 Numerical Evaluation of the Possibilities of Remote Laser Sensing of Fish Schools, M. Krekoval et. al, Applied
Optics, Vol. 33, No. 24, 20 August 1994.
52 It should be pointed out that this is not an actual diffuse attenuation coefficient measurement, as a slit was in place
that serves to reject multiple scattered light, meaning that the apparent attenuation coefficient will be higher than the
actual.  Companion data collected in these waters without the slit confirmed that the waters had K values of between
0.10 and 0.17/m typically.
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corresponding variances changed by a factor 2 or greater.  In combination, these shifts would
indicate that indirect detection of schools, via the water optical properties, is possible.

Table 8.  Attenuation coefficient statistics from data in Figure 72.

Data Segment Mean Standard Deviation Mean/Std.Dev.
School  1 0.51 0.058 8.7
Between Schools 0.44 0.018 25
School 2 0.52 0.038 14

The depth penetration for such indirect detection approaches depends only on the water
backscatter efficiency and the sensor radiometric performance.  The tuna optical properties
matter only insomuch as they affect the apparent water optical properties.

Figure 73 shows the SNR for the upgraded ASTIL sensor as concerns the measurement of water
volume backscatter in order to measure the attenuation coefficient of the water column being
imaged.  Cases for averaging 1, 10, 100 and 1000 cross-track pixels are shown and labeled
accordingly, all for JWT-II water and 500 meters aircraft altitude.  As the assumed CCD for the
system is only 1024 pixels in the cross-track direction, the 1000 pixel average represents an
average across the entire fan beam.  In practice, one would probably use either the 10 or 100
pixel average, as these would allow some measure of both the along-track and cross-track extent
of a school, presuming that its attenuation signature was detectable.

The SNR shown in Figure 73 is not indicative of the maximum attainable SNR for measuring the
water attenuation, as it only indicates the per-range-pixel SNR for direct measurement of the
LIDAR return from the water volume being imaged.  In practice, the entire water column away
from the surface specular return would be used to estimate the attenuation for a particular cross-
track pixel, so that the SNR per cross-track pixel would potentially increase by more than an
order of magnitude.  Consequently, the data shown in Figure 73 are conservative as a theoretical
estimate.

The model data plotted in Figure 73, when combined with Figure 72, indicate the potential of a
school detection scheme that is relatively simple and allows for depth penetration suitable for
schools of ETP yellowfin tuna.  However, these results are new and have not been studied
extensively enough to allow for confidence in applying such a detection scheme broadly.  A
thorough study of the expected impact of the actual non-fish-related variation of water optical
properties, combined with further experimentation to gather actual ETP school data would
enable a direct assessment of the efficacy of this detection scheme.

6.9.5 Summary of detection performance

Based on the measured and modeled data presented in this report, some summary estimates of
detection performance can be made.  In order to maintain a modicum of simplicity and clarity in
presentation, only the maximum anticipated depth for a selected tuna in nominal ETP waters will
be tabulated for the several detection schemes presented.
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Table 9 shows the estimated performance for an upgraded ASTIL sensor using the detection
techniques discussed in this report. All of the detection approaches based on single tuna statistics
were tabulated based on a 200m flight altitude.  The reason for this is that the performance at
500m was shown to be only marginally adequate for realistic operations.  Furthermore, as the
probable interest in detecting tuna using matched filter single-tuna statistics is for understanding
school behavior and gathering school population statistics, the sacrifice of swath for the
decreased altitude and improved detection performance is likely to be a good tradeoff.  The
detection depth for these first two single-tuna matched filter approaches is limited fundamentally
by the single tuna statistics; the detection event has to surpass a threshold in order to be counted
in an aggregate detection scheme, so that the initial detection event still limits the performance.

The performance for single tuna events within a school can be extended substantially if the
single shot statistics are observed without a threshold, meaning that no single tuna events are
detected.  This approach simply generates the matched filter events for each shot and extracts
statistics from the histogram (or equivalent) of the matched filter image data.  For this method,
the single tuna detection data could be saved once a school had been found, but it’s not clear at
the time of this writing whether or not this detection approach would cater more to school studies
or merely fish school detection.  The 30m maximum depth shown here is for a 200m altitude, as
it is assumed that the image data of the school would still be of interest.

The maximum performance to be obtained with the system occurs when the school is indirectly
detected by measuring apparent water optical properties.  This approach treats the tuna as
additional scatterers in the water that increase the sensor-derived diffuse attenuation coefficient
for the water column being imaged.   Since it seems unlikely that such a scenario would be used
for imaging schools, the 500m altitude was used for this estimate in an attempt to represent a
realistic operational scenario.  The maximum depth estimate is given as below 45m, as there is,
theoretically, signal processing gain to be realized that was not included in the calculations made
as part of this research.

Table 9.  Estimated maximum detection depth for ASTIL detection of 20kg, 100cm yellowfin
tuna in the ETP.  Variable altitudes are used depending on configuration, so as to maximize

utility.

Sensor Configuration Detection Technique Reference Maximum Depth (m)
Upgraded ASTIL,
H=200m

Single tuna matched
filter

Figure 65 18

Upgraded ASTIL,
H=200m

Single-shot multi-tuna
matched filter w/
threshold

Figure 68 20

Upgraded ASTIL,
H=200m

Single-shot multi-tuna
matched filter w/o
threshold

Figure 70 30

Upgraded ASTIL,
H=500m

Single-shot water
optical property
detection

Figure 73 45+
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Note:  Table 9 does not reference packing density or body length, mainly because the packing
density does not significantly impact performance when an entire school is considered, since
multiple shots then contribute to the overall school SNR.  The data shown here are derived from
single-shot performance estimates when the packing density was unity, corresponding to BL=1.
For the upgraded ASTIL sensor used for these calculations, this would be equivalent to an
arbitrary packing density detection scheme but with the school size fixed at 150 tuna.
Consequently, the estimates made here are again conservative if a school of 150 tuna is in some
sense considered to be small.

6.10 Utility of ASTIL for school imaging

6.10.1 Government oversight and stock assessment

The data products presented in this report are supportive of the use of LIDAR for stock
assessment and related measurements that are primarily concerned with aggregate fish school
quantities.  Schools of tuna probably represent the most difficult pelagic species to image with
LIDAR, owing to the lower packing density and low apparent reflectivity.  Even so, the ASTIL
sensor indicates that there is probably a useful role for LIDAR in studying and monitoring fish
stocks in the ETP.  When packing densities are higher, the utility of LIDAR is greatly enhanced,
as implied by both the data shown and the contrast analysis performed in this report.

6.10.2 Commercial fishing operations

Commercial concerns require cost justification that cannot be spread across an entire industry, as
is the case with a government monitoring and oversight role.  This means that there must be a
positive cash flow generated by the use of the sensor, either through improved efficiency, or
through improved marketability of so-called “green” products.

Any realistic assessment of profit and loss associated with airborne LIDAR operations in support
of ETP tuna operations is well beyond the scope of this report.   The reason is that operational
scenarios must be explored thoroughly, with good quality input from representative industry
players.  Then the value added from LIDAR must be carefully quantified so as to determine the
cost function for incremental fleet improvements with LIDAR.  If these data could be
determined, then a robust analysis of profitability and feasibility could be conducted.

The most that can be said at the present time is the LIDAR does yield useful information on
schools of fish, and has increasing utility as packing density or single fish size increases for the
species of interest.  The results presented in this report substantiate this claim, and it is
anticipated that future research will continue to enhance the utility of LIDAR for fish school
observation.
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6.11 Discussion of problems encountered

6.11.1 Aircraft logistics and alignment

Because of the relatively narrow swath of the sensor, it was difficult to align the sensor precisely
over the schools when present, especially in the open ocean where there are no local references.
This difficulty is compounded if the aircraft does not have at least a high wing design and/or a
wide peripheral view for the pilot/spotter.  The Piper Aztec used in both the Hawaii tests and the
New England tests was quite difficult to operate in because of its lack of a high wing and
because of its limited view from the cockpit.  By contrast, the Partenavia Explorer used in the
first ASTIL experiment is nearly ideal and has allowed for easy experimentation by comparison
with the Aztec.  The Aerocommander provided by CSIRO was also quite useful, having a high
wing design.

6.11.2 Proximity to fish schools and size of available schools

The experiments conducted in Hawaii had the advantage of good weather, good water conditions
and a good spotter pilot. However, the schools of tuna that were large enough to find and image
as a school were too far out to sea to be reached with the Aztec aircraft.  The experiment was
planned based on reports and commentary from both fishermen and pilots that there were often
tuna in close proximity to the islands.  However, this information was somewhat anecdotal and
may have been skewed toward the sport-fishing type of tuna sighting.  Schools with many
hundreds of fish, which is the type of school really needed for an airborne LIDAR
demonstration, did not frequent the waters near the islands during our experiments, and some
fishermen have indicated that these are more common to waters more distant from the islands.

6.11.3 Optimality of available sensor technology

On a developing technology, the list of items to improve often outpaces the opportunities to
make the improvements.  The ASTIL sensor development is no exception to this rule.  Early
experiments lacked a real-time display, which was implemented by the time the Hawaii tests
were conducted. Data collection was clumsy and required operator finesse in the first
experiments; by the end of the testing in New England, an operator graphical user interface
(GUI) had been implemented on a touch-screen display. Also, navigational data and attitude
information were added to the collected data, so that data registration was possible.  These and
many similar improvements were made during this effort, all of which have helped to produce
better ASTIL data.

The one sensor parameter that did not change over the course of the experiments was the cross-
track resolution and the swath.  As was mentioned earlier, the resolution was set to the maximum
that could be had at the time this development was begun; and only recently has a higher
resolution mode been implemented on a separate (but similar) system.  The swath also remained
constant, as this was set by the availability of commercially available collection optics.

As this report has shown, additional resolution and swath would have helped improve the quality
of the data.  It is not clear that such changes would have yielded data on yellowfin, as the
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difficulties with proximity to schools and their sizes would still have been present.  However, the
quantity of GBFT data may have improved with swath, and the quality would certainly have
improved with higher resolution.

6.12 Description of need, if any, for additional work

This research has established proof of principal for LIDAR imaging of tuna under several
conditions.  However, the database that has been collected is still quite small, and additional
experiments will help the understanding of the detection of tuna with LIDAR.

First, an experiment that specifically addresses the bidirectional reflectivity of tuna would be
very valuable for gaining closure on the LIDAR signature of tuna. Many things have been
established in this regard during this effort, but some of the issues not covered include 1) diffuse
component reflectance of tuna, 2) specular component reflectance of tuna, 3) angular dependence
of the reflectance of tuna, and 4) spectral behavior of the reflectance of tuna.  All of this points to
the need for a good physical model of tuna, and other species if possible, so that this work can be
extended meaningfully with both analyses and experiments.

Second, additional experiments with tuna will only help to strengthen the understanding of the
tuna detection problem. The experiment in Hawaii did not succeed for a number of reasons,
perhaps the greatest of which was the simple lack of opportunities over bona fide schools of
tuna.

Last, additional experiments with other pelagic species will help address questions of viability of
LIDAR to commercial fishermen and for biomass and stock assessment as well.  This was not a
point of emphasis in this effort because of the dissimilarity between tuna and sardine, for
instance – there was a fundamental lack of relevance.  However, the data that was collected (i.e.,
akule) indicated that there are meaningful experiments that could yet be conducted for non-tuna
pelagics.

7. Evaluation

The goal of demonstrating the utility of the ASTIL sensor for dolphin bycatch reduction in the
ETP was achieved generally, but not with the specificity that was desired.  Ideally, the
experiments would have yielded images of schools in the open ocean, perhaps even with and
without dolphin.  Instead, images were collected for captive schools of SBT, dolphin, and GBFT,
which allowed for an equivalent analysis to be conducted that used analytical tools and physical
reasoning to bridge the gap between the data collected and the desired ETP yellowfin data.

The utility of the ASTIL sensor for tuna detection was most clearly demonstrated by the SNR
separation measured between the tuna and the background, and the subsequent automatic
detection of the GBFT school in New England.  Because of the similarity established between
the GBFT and the SBT, and because the SBT are physically similar (not identical, but similar) to
the yellowfin, the detection results presented here are conclusive in regard to detectability of
tuna, as known scaling laws allow the GBFT results to be extended to smaller species of
optically similar tuna.
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The research goal that could not be addressed in this work was that of determining how well one
could use the ASTIL sensor to reduce bycatch.  This was a reasonable goal to desire, but one that
still requires more data than has been collected to date.  The general reasons for the paucity of
yellowfin data have already been delineated.

Modifications were made to the goals and objectives in only one notable case: sensor hardware
development.  Because of the timing of the award, some of the hardware development had
already begun under Areté funding.  The proposed effort was much less ambitious than that
which was undertaken with Areté internal research and development funds.  This was fortunate,
as the proposed system configuration would not have led to experimental success (the resolution
was too low – a fact that was discovered experimentally and confirmed later analytically), and
the funds needed for analyzing and understanding the tuna detection problem would have been
spent on hardware instead.

To the extent that goals and objectives were associated with schedules, modifications were made
here as well.  A combination of the timing of the award, the need for non-interference with the
ONR effort that owned and needed much of the STIL equipment, and windows of opportunity
for collaboration with other researchers (i.e., the New England Aquarium) precluded a pre-
planned experimental execution.  It was serendipitous that many of the analytical tools used in
the detection assessment of the GBFT were available only because of having occurred after
much of the “heavy lifting” had been done on a separate ONR STIL effort.

7.1 Dissemination of project results

This report will serve as the first and principal means of disseminating the project results and for
interested researchers, data will be made available on the Internet for independent research.
Select data products will be made available on the World Wide Web as well, and many
collaborators and researchers have accessed and reviewed the data presented already.  Finally,
the authors will prepare a publication that summarizes this work so that others will be aware of
the progress made and will be enabled to extend the work as possible.
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Figure 1.   Conceptual view of STIL as a 3D sensor for subsurface viewing.
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Figure 2.   Streak tube architecture from a photonics point of view.
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Figure 3.  Typical streak tube lidar data collection illustration.  Coverage of the dimension
perpendicular to the plane of data collection is achieved by either motion of the sensor or a 1-D
scanning system.  A method to collect volume data with one laser pulse, rather than the single

slice shown here, is described in Section 2.2.3.
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Figure 4.  Block diagram of STIL laboratory system prior to ASTIL development efforts.
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Laser Assembly
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PC Chassis
Pentium CPU
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DSP Realtime Video
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Beam Optics
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RealTime Kinetic GPS

CMIGIT Attitude Package

Figure 5.  ASTIL system configuration.  Dashed blocks indicate components added or upgraded
after the initial CSIRO experiments.
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(a)

(b)
(c)

Figure 6.  Terrestrial mapping data. (a) Aerial photo of the buildings being surveyed. (b) Single
laser shot showing raw data for one line image, indicated by single white line in (a). (c) Range

image of area outlined in square in (a) generated by reconstructing from the individual line
images.
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Figure 7.  ASTIL installation in the Partenavia Explorer for the first airborne tests
in February of 1997.

Figure 8.  Jeff Plath, Andy Griffis and Pat O’Brien with the Partenavia Explorer in February of
1997 for Tucson flight tests.
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Figure 9.  Energy density as a function of altitude for 3 ASTIL sensor configurations.  Solid is
for 130mJ and 15 degree swath (prototype ASTIL at 30Hz); dotted is 130mJ and 25 degree
swath (upgraded ASTIL); dashed is 12mJ and 15 degree swath (prototype ASTIL at 100Hz)

Figure 10.  One of the SBT fish nets in Boston Bay, South Australia.
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Figure 11. Andrew, Tasmanian Air Pilot, Dr. Ann Cowling, and Derek Hayman, who provided
aircraft and logistics support for the CSIRO experiments.

Figure 12.  ASTIL installation aboard the Aerocommander 500 provided by CSIRO and
Tasmanian Air.  Both racks were installed across the width of the aircraft body – the only

installation to date to allow for this.
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Figure 13.  Example of a single SBT signature at 3m depth.

Figure 14.  Top view of a 16kg SBT.

Figure 15.  Side view of a 16kg SBT
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Figure 16.  Example of radiometric calculation for ASTIL performance assuming a Lambertian
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.
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Figure 17.  Regions flown in Hawaiian field tests.
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Figure 18.  Example of ASTIL raw data showing the 2D nature of the data from each pulse of the

laser.  (a) Raw data from Boston Bay showing the return from both the surface and the bottom,
(b) corresponding annotated image.
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Figure 19.  Average range-transect for raw data in Figure 18.



Figure 20.  2D Image sequence
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 for an akule school (Hawaii, 1997)
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Figure 21.  3D Rendering of akule school from raw 2D data; surface is removed prior to
rendering.

Figure 22.  Location of experimental data collection for the GBFT experiments. The GBFT data
presented in this report were gathered at the locations in the upper right hand region of the chart,

off the northern tip of Cape Cod.
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Figure 23.  Raw image of GBFT.  The surface return dominates the image, however, small spots
near the lower right hand side can be seen.

Figure 24.  Raw image of GBFT.  Several faint signatures are visible on the right hand side of
the image.

 

Figure 25.  ASTIL image of yellowfin tuna near Pearl Harbor, HI (September 1997).  The tuna is
the bright spot just beneath the surface in the left half of the image.
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Figure 26.  Cross-track (horizontal) slice through raw image of yellowfin tuna (upper) and its
corresponding derived contrast.  The tuna signature is at the 70th cross-track pixel and shows a
contrast just above 2.   The possible under-resolved nature of the signature may have introduced

a lower than usual contrast.
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Figure 27.  Contrast vs. effective reflectivity for several packing densities.

Figure 28.  Shadow image of 6-inch fish collected from an underwater-class advanced
technology STIL sensor.
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Figure 29.  Contrast vs. pixel area (resolution element) for a 20kg tuna.
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Figure 30. Required lateral resolution (m2) to achieve contrast = 4.4  vs. tuna effective
reflectivity, based on 20kg tuna.  The packing density is 0.25/m3
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Figure 31.  Pre-experimental signal-to-noise ratio calculations for GBFT; solid line is for non-
scattering water media, dashed line is the theoretical maximum SNR for the camera system

based on the available digitization, dotted line is the performance for scattering media.

Figure 32.  2D ASTIL image of dolphin; water depth is 12m; dolphin is at 8m depth.
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Figure 33.  Image of dolphin in after range and exponential decay are corrected for.

Figure 34.  Processed GBFT image corresponding to the raw data shown in Figure 23.  A single
GBFT dominates the data, seen near the middle right hand side of the image.

Figure 35.  Processed image of GBFT corresponding to the raw data in Figure 24.  Six GBFT
signatures are readily visible and one or two marginal instances are also present.
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Figure 36.  1D profiles through the image of Figure 34.  The upper profile shows the context of
both surface and GBFT return on logarithmic scale; the lower profile focuses on the GBFT

return and is plotted on a linear scale.
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Figure 37.  3D image of a GBFT school near Cape Cod.  The school spans an area roughly 20 x
40m laterally and extends from near the surface down to 5m in depth, as shown in the rendering.
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Figure 38.  2D topographical projection of the 3D data in Figure 37.
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Figure 39.  Average range profile of the GBFT data.  The average is for range vectors aligned by
matched filter peak location.
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Figure 41.  Average cross-track profiles of GBFT.
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Figure 42.  Average along-track profiles of GBFT.
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Figure 43.  1D profile for peaks with noisy raw-aligned computed data (solid line) and the
original noiseless data (dotted line).  A representative noisy image and the noiseless image are

shown in the lower left hand corner.  The noisy object has an SNR of 9.

Figure 44.  1D profile for peaks with noisy raw-aligned computed data (solid line) and the
original noiseless data (dotted line).  A representative noisy image and the noiseless image are

shown in the lower left hand corner.  The noisy object has an SNR of 36.
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Figure 45.  Scatter plot of contrast versus GBFT depth.  Median is 4.4; standard deviation is 1.8.

Figure 46.  GBFT school depth distribution.  Median depth is 3.4m; standard deviation is 0.94m.
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Figure 47.  GBFT along-track size distribution.  Median is 0.57m; standard deviation is 0.34m.
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Cross Track Size Distribution
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Figure 48.  GBFT cross-track size distribution.  Median is 0.55m; standard deviation is 0.14m.
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Figure 49.  GBFT cross-track position as a function of depth (m) below the surface.
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Figure 50.  GBFT along-track position as a function of depth (m) below surface.
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Figure 51.  Histogram (top) and Cumulative distribution (bottom) graphs of the probability of
detection (POD) and probability of false alarm (PFA) for GBFT with ASTIL.
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Figure 52.  ASTIL receiver operating curve for GBFT; linear coordinates.
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Figure 53.  ASTIL receiver operating curve for GBFT; logarithmic coordinates.
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Figure 54.  GBFT detection performance showing automatically detected tuna and the analyst-
detected tuna for a region extending beyond the central school region by 50% in each direction.
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Figure 56. In-water spreading as a function of depth for 3 water types.  Solid line is JWT-II;
dotted is JWT-IB; dashed is JWT-IA.
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Figure 57.  GBFT detected per shot for the central 40 shots over the GBFT school.
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Figure 58.  GBFT detected per shot for 3 different laser PRFs:  100 Hz (same as ASTIL
configuration), 50 Hz, 25 Hz.  Data are derived from the 100 Hz GBFT data already shown.

Figure 59. Filtered GBFT detected per shot for 3 different laser PRFs:  100 Hz (same as ASTIL
configuration), 50 Hz, 25 Hz.  Data are derived from the 100 Hz GBFT data already shown.  An

11-point boxcar average has been applied to the data to produce the filtered output.
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Figure 60.  Comparison of measured SNR to theoretical SNR for both scattering and non-
scattering media using a measured target contrast.  Dotted line is SNR with scattering; solid line
is SNR without scattering.  GBFT SNR is shown as a single point with error bars, representing

the measured GBFT statistics.

Figure 61. Comparison of measured GBFT SNR to theoretical SNR for both scattering and non-
scattering media using a derived target reflectivity.  Dotted line is SNR with scattering; solid line
is SNR without scattering.  GBFT SNR is shown as a single point with error bars, representing
the measured GBFT statistics.  The dashed line indicates the digitizer-limited maximum system

SNR, to help distinguish the theoretical from the practical.
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Figure 62.  SNR performance estimate for 100cm yellowfin in the ETP; swath is 15 degrees,
energy is 130 mJ/shot, resolution is 1024 pixels cross-track, water is JWT-IB, with mean square

angle of 0.06 (estimated ETP value); altitude is 500m; contrast is 6.4.

Figure 63. SNR performance estimate for 100cm yellowfin in the ETP; swath is 15 degrees,
energy is 130 mJ/shot, resolution is 1024 pixels cross-track, water is JWT-IB, with mean square

scattering angle of 0.06 (estimated ETP value); altitude is 200m; contrast is 6.4.
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Figure 64. SNR performance estimate for 100cm yellowfin in the ETP; swath is 15 degrees,
energy is 130 mJ/shot, resolution is 1024 pixels cross-track, water is JWT-IB, with mean square

scattering angle of 0.06 (estimated ETP value); altitude is 100m; contrast is 6.4.

Figure 65.  SNR performance estimate for 100cm yellowfin in the ETP; swath is 25 degrees,
energy is 130 mJ/shot, resolution is 1024 pixels cross-track, water is JWT-IB, with mean square

scattering angle of 0.06 (estimated ETP value); altitude is 200m; contrast is 6.4.  Sensor has
upgraded streak tube electronics, CCD camera, and principal lens assembly.
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Figure 66.  SNR performance estimate for 100cm yellowfin in the ETP; swath is 25 degrees,
energy is 130 mJ/shot, resolution is 1024 pixels cross-track, water is JWT-IB, with mean square

scattering angle of 0.06 (estimated ETP value); altitude is 500m; contrast is 6.4.  Sensor has
upgraded streak tube electronics, CCD camera, and principal lens assembly.

Figure 67.  SNR performance estimate for 100cm yellowfin in the ETP; swath is 25 degrees,
energy is 130 mJ/shot, resolution is 1024 pixels cross-track, water is JWT-IB, with mean square

scattering angle of 0.06 (estimated ETP value); altitude is 1000m; contrast is 6.4.  Sensor has
upgraded streak tube electronics, CCD camera, and principal lens assembly.
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Figure 68.  Multi-fish SNR performance estimated for single shot detection statistics at 1 body
length packing within a 20000kg school at 200m altitude.

Figure 69.  Multi-fish SNR performance estimated for single shot detection statistics at 1 body
length packing within a 20000kg school at 500m altitude.
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Figure 70. Multi-fish SNR performance estimated for single shot detection statistics at 3 different
body lengths (solid = 1BL, dotted = 3BL, dashed = 10BL).  Altitude is 200m.

Figure 71.  Multi-fish SNR performance estimated for single shot detection statistics at 3
different body lengths (solid = 1BL, dotted = 3BL, dashed = 10BL).  Altitude is 500m.
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Figure 72.  ASTIL-derived attenuation coefficient for SBT in Boston Bay (South Australia) and
adjacent waters.   Two captive schools were imaged, with approximately 50m of open water

between them.  Dotted line = raw K estimates per shot; solid line = smoothed version of raw K
estimates.

Figure 73.  SNR associated with volume backscatter data for use in calculating apparent water
attenuation.  Shown are upgraded ASTIL performance data for 500m altitude, JWTII water, and
range bins of 0.3m per range pixel.  The individual curves are labeled for the number of cross-
track pixels averaged to estimate the attenuation (1024 is the total cross-track pixels available).
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